| ? ?

-

15/10/2017

, .

:


- . 
. , , .


- . 
, , . .


– . 
, , .


– .
.

, , .


, (, , -), .

 

 |   |   | - |  | 

 

  1. :     .
  2.  

:


.  .
.  .
.  .
.  ( ) .
.  ( ). 
.  – .

 

, .

 

-

 |   | 

 

, , .
, .

 

-DNA . , ( , , , , ). , , , 1-3.
. : CRP, serum amyloid A, TNF receptor2, -8 4-5.
-1β, -6 -10 6.
-1β β   7.

-8, CRP -serum amyloid A   8.

II-IV. CRP 9.

.
( ), 10; 6 11; 12.
, (DII) . , 13. -, 14.

 

?
, .

15 2016 ( A2 (cPLA2), COX, LOX , ). , . .
( ), ( ), (), (DAS) (), ( , ), EGCG ( ), ' (, , , , ), (, , , ), (), 6-'' (''), -3- ( ), (), C- ( ), ( ), ( ), ( , ), ( ), (), ( ).

(, + ) 16.
, ( ). CRP, TNF-α -6, 17-18
CRP, TNF-α - 6 19.
, , , CRP 20.

 


, , . 
, :

  1. , , . -10 . .
  2. . , , .
  3. , . .
  4. , : , , , , '' '.
  5. 3, , , ', .
  6. .
  7. : , , , , '. , , '.
  8. : , , '. .
  9. .
  10. . , ( ), .

: .

 

 


. () , . insulin-like growth factor) IGF)  . -IGF , . 
, , . , 21.

, , ATP ( ) . 
: , , , , , 22.
2-3. , -67% 23.
, 24.
, (, '). (Stevia rebaudiana) 25.

 

-

 

( , '), , , , , . , .
, ( ) ( , , ). ( , ). , ( , , ) ( , , ).

 

 


, , (: -, ). , , 26
, , 27
, (, , ) 28.

, , , . : , , , '', , , ( : , , ). , . , . 
, , , .
. , '.

 

 


.
, , () , ' , . , , .
:
/ . 
(doxorubicin, adriamycin) , , 29.

(20-500 " " ) , 30-33. , . 
, (Fluoroplex, Doxorubicin, Bleomycin) , .
, 34-37
, ( ). , .

- 38, , 39-40.
() . , , , 41-43

. - 44tamoxifen, trastuzumab, paclitaxel, (45)cisplatin  46 (5-Fluorouracil). , Cyclophosphamide 47. .

, , Etoposide, Temozolomide) 48), Cisplatin) 4950 (Fluorouracil-5, 5-FU plus oxaliplatin/FOLFOX).

, . , .

, 51
52

 

 


.
  .

:

 |  3 |   |   |   |  |   |   |   |  |  |  |   |  " " |   |   |   |  |  |  |  | '' |   |  |  

 

:

 |   |  |  ,  |  A

 

:

 

 

, . , . 
, . , . 
, , .
. , , . ( A, BPA). , BPA, 53
, , .

 

 

3 , , . , DHA (, , ) 54-55. 3 : 56-57, 58 59, 60

, - (, , , ), 3. ( ) . 
3 , ( ). 

 

3:

3 ( -). (0.7%-1.5% ). : , . 61-62. 63. , , , , . 64.

' (Salvia hispanica) ' -2.5 , 5 , 2 , (9% ), (15%), , ; ( , ) 65-67.
, ' 68 69.

 

 

()

, , , . .
, , , , 70-74. , 75.
, / , -'76. , VEGF -VGEF-2 77.

 

 

 

: ( , /, , ', , , ), , , , , , .
64.
(NK cells) 78. -3- (I3Cs), , , 79-81.
: 82,83, 84,85.

* . .

 

 

: , , , , .
-2 64.
: , , , . (: ) -, . , ( COX -LOX) ()86.
, . , .
, , , , , 71.
, 87.
* ().

 

 

, , , 88,89. 71.
2-3 -40%-50%. , , 89
, , 90,91. (, ) .
( ) 68.
, , , A.
( , , ). (-, -, - ). ( ) 92.
- 93. , - 94. , - VEGF ( ) 95,96.

 

 

 

. : , ( ), , , , , .
, , , ,  97,98NF-kappaB.
, , 99-103.

 

 

( ) HER2 . , , , , ,  104. 105, VEGF ( ), COX2 -MMPs 106-108.
, 109-111.
.
, , ( , ). 

 

 

 

( , ), ('), , , , , , , , , NF-kappaB, COX2, TNF, PGE2 112-114
, , , . 
, (tamoxifen, trastuzumab, 44(paclitaxel,  45cisplatin  46 (5-Fluorouracil). , Cyclophosphamide 47.
(Radioiodine) , -115DNA.
. ROS. " , , , . 116-118.
, 119.

 

 

: , , , , K, A, .
(Undaria pinnatifida), (Laminaria japonica) (Hizikia fusiforme). . 
, () 120. -1 -TNF-α 121ROS.
(Fucoidan), : NF-kappaB, VEGF ( ) 122,123.  , , 124-126.
(Fucoxanthin) , , , 127-129
, 130,131. 2012 ( ) , 132.
, 2016 , , 133.
" 0.15 " .
29.3-45.8 "/"; 93.9-185.1 "/"; 241-4921 "/"134.
. , , (). , . 135.
136NF-kappaB.

 

 

 
, ( ). ( ), , , D2 ( ). , , 137,138.
*:
Ganoderma lucidum (), Lentinula edodes (), Grifola frondosa (), Trametes Versicolor (, ), Cordyceps sinensis (), Flammulina Populicola (), Agaricus Blazei ().
* , .
, 139. 140 (VEGF).
, K, , , ( )141. - (, , , ) ( -β1, IL-6, TNF-α, E2, )142.
( ) PSA . : IL-2, IL-4, IL-6, IL10, IL12, TNF-α ,  CD4+, CD8+ -NK ( )143. 144.
CYP2D6 Doxorubucin. Methotrexate, 6-mercaptopurine, tegafur/uracil, Cisplatin, Cytarabine -dexamethasone 143.

 

 

 
: , , , , , , , , . 
( ), :
ROS, NF-kappaB -8 145.
, , 71,146,147.
58. 148. 8 , -, -, + 149.
, - (, , , ), -' (30% -50% ). 150.

 

 

( ) 
: , , , , '.
C , NF-kappaB, TNF, Cox2 . , , 112
. 151. 152,153.
, (', ', ), 154. , 155
156.
, , , 157-161.

 

 

" " ("Drupe, "Stone fruit)
. : , , , , . , , .
(, ), , 162-164.
. 2-3 ( 60 ") 165.
, , 162. .
( ) E. 166.

 

 

 
: , , , , , .
64.
( , ) 167  , -168DNA.  169
, . 162.
170.
, , 112,  162UVB.
( , ). 
( ), ( ) , .
   .

 

 

 
' NF-kappaB, COX2 112. . , , , 162,171-173
, , , PSA , , 174.

 

 

 
NF-kappaB, COX2 112,175. , 176.
10 "/" 177.
 (5-Fluorouracil- 5 (FU 178.
, . , . : , - ( , ), , ( , )179-182.
   .

 

 

 
: , , , , , , , ( , ).
, 183. 46% () 76% ( ), . 3 6, 3:6 (1:4)184. , 3, . 2.5 ' .
( B, E) (, , , ). . : ( ), ( , ), () . , ( , )185.
-EPIC ( ) 16 ' 186.  28 ' 187.

 

 


3 ( -). (0.7%-1.5% ). : , . 61,62.

63. , , , , . 64.
' (Salvia hispanica) ' -2.5 , 5 , 2 , (9% ), (15%), , , ( , )65-67.
, ' 68  69.
, COX2, NF-kappaB 15.
188.
, , . . 80 "/" 189.

 

 

 

: , , , , , , , .
, , , ( ) . , , , , 190-193.
(, , ) 194.
" ", , , -195COPD.
* 193.

 

 

 
- (, ). , 196.  , 197  198. , NF-kappaB 112.
(Lunasin) , ,  199(NK), , , , 200-202. , .
(, , , ') , 203

, , 64.

 

 

''
, , :  '' '' . 
, '' NF-kappaB TNF-α 204.  - 205TNF-related apoptosis-inducing ligand) TRAIL). '' 206. -6 (doxorubicin, paclitaxel, 5-fluorouracil, platinum) , ( ). 207.

, '' , . 0.5-1 ' ( ), -3 6 208-210

 

 

 
,  EGCG) epigallocatechin gallete), , , . , NF-kappaB, COX2 -211,212
EGCG , 212. (', ' ') -213EGCG.
, / , 214-217. , , , 218,219.
Docetaxel 220.

2-3 , 2 ' ( 5 ). 

 

 

 
NF-kappa B, TNF-α222 -IL-6, IL-8, IL-12) 112,223).

100 ' 1.6-4.8 ' 221 12 ' -3 . 

: , , , , , , , , , 221,224-228
, , -223,224,229-231DNA. 
, Etoposide, Temozolomide)48), Cisplatin)49) 50 (Fluorouracil-5, 5-FU plus oxaliplatin/FOLFOX).
:
, . , . , 51.
, NF-kappaB 232.
, . : β-sesquiphellandrene -233-235Turmerone.
.
, 236-238  239-240 ( – Piper nigrum) .

 

 

 (70% ) 
, . , 241.
(20 ', 2-3 ) CRP 242
, 243,244.

 

 

:

 |   |  |  ,  |  A | 

 


. , . (IGF (insulin-like growth factor . -IGF , . 
, , . , 21.
: , , , , , 22.
2-3. , -67% 23.
, 24.
, (, ').
(Stevia rebaudiana) 25.

 

 


245,246, , .
-EPIC 2008, 35 -32 247.
, , ( ), , 51% -56% 248
-' (NHL), – ( ) -NHL -5% 200 '/ -6 249.
. 60%-80% , 246 : , , DHEA, , 250
, . 251-253
 ( ) 254 .
, -2000 " 255
IGF-1. , (BCAA) , mTORC1 256.
, , 257
. , , 258.
259,260 261-263

 

 


-20-30% 264,265, , , , , , , , 257,266-270.
270,271,266,264: heme . , , , (heterocyclic amines) - - (polycyclic aromatic hydrocarbons). ( ) (, , ).
, , 6 .
-500 , , 266.
. . , . , IGF-1 . , , (ATP), 272.
, .
( 3 ), -15%-20%. (4 ) . 270.
. , , . . , , , , .

.

 

 

, ,  
, 273-275.
, .
- ( ).   , , 276. BPA) A) -diethylstilbestrol .
- ( , )277. , .
, , , 278.
( ), .
. , (E-250) 279. (E-211) 285. (E-212) , 281. 282
, 4-methylimidazole 283

 

BPA) A, )

, -PVC ( ). PVC : , . PVC , / , BPA , , 276.
BPA, (Phthalates) , TNF-α, CRP 284.
BPA , 285
-BPA BPA 286,287.
, BPA ( )288.
. , .

 

 

 


 |   |   |  ? |  |   | 

 

289, 2014 " (PCRM), .
, , .
:

  1. .
  2. , , , .
  3. .
  4. , , , , .
  5. .
  6. .

 

 

- . 3 6, () . 
, , 56% -3 : , . , , 290.
( )

 

 

 

, , . 
ATP , 272. , , . 
. . -13 -36% 13 . , ( ) -13 .
, -HbA1C 291
, .
, .

 

 

?


. ( ) , .
( , ,
292,293.
. , . , . 294, .
, , 295, . 
, ; .
, . , -'296.
, ( ), "" .
( 2016): , , , , , , , , , , , , , , , , , , .

* : http://www.ewg.org/foodnews

 

 

 

, , 251,297.
, , , . . TNF-α 298, -1β. , , , , , 299.
, . -14% -20% 300. 2003 . , .

 

 


( ), , , , .
3:6, , 301.
. , .
-EPIC, -200,000 , (12%) (10 ) 302,303. 304.
: ( 17%), (27%-33%), (10%), (4%), (42%); 305. , , .
306
, 307 308-310 .
.

 

 


, . . ( )311 . , 312.
. , ( ) .
-3 " 33 , ( 20-50 ' ) 313-315 . , ( ). 131 ! 
, , . , .
316. , . 10 , 317
, , , . (50-70 "/") . 2 ' (" 30 ) . -6 . -30 318.
20 , 319.
, . .
, , 80 -116 114. , ( ) 316.
(, ), : , , , , , . , ( ), , 320.
, . .
, , .

 

 

 


.
.  , .  . , , .
.

?   .

 
  1. , (, , '), , .

 

  1. . , ,

 

 

  1. , . .

 

 

  1. , : , , , , '' '.

 

 

  1. 3, , , ', .

 

 

  1. .

 

 

  1. : , , ,  , '.  , , '.

 

 

  1. : , , '. .

 

 

  1. .

 


  1. . , ( ) .

 

 

 

     ?   .

 
 

 


, , , .
, , , .
, . , , . , .

:
' (Panax ginseng) - , ' (Panax ginseng) , . ' () . , ' , , , . ' .

(Ganoderma lucidum) - : . , , , . . , (, , , , ) . .
, , , . , . , . 

' (Panax quinquefolius) - ' . ', -DNA . ( ) ' 8 . , ' (' ) . , ' , . ' , . / , , , , , , . ' .

(Silybum marianum) - , : , , . 
, . .

 

. . 

 

 

 

. .
– , , Curcuma longa, Scutellaria baicalensis, Boswellia spp, Glycyrrhiza glabra '227,321-324. ( ).
Gymnema sylvestre, Momordica charantia, Cinnamomum zeylanicum '325. , , ( ).

 

 

 

, ( , '), , , . , .

, . 
, . , ( )326-328. , .
, , , 329-334.
Astragalus membranaceus , , 335,336.

Panax ginseng , 337. ' 338.

Withania somnifera   , 339.

Ganoderma lucidum . 340.

 


, :

Panax spp. (Panax ginseng, Panax quinquefolius, Eleutherococcus senticosus), Rhodiola rosea

, , Withania somnifera, Centella asiatica, Ocimum sanctum.
, , .

 

: 
Astragalus membranaceus – (), , , , , .
Glycyrrhiza glabra – ( – ), : , (, ) .  , :  .
Ganoderma lucidum – , , , , , , .
Schisandra chinensis –  ( , ),  , .
Cordyceps sinensis – , , , .

Lepidium meyenii –  ( , ) , .
Panax ginseng – , , , , , , , .

Panax quinquefolius - , ,
Eleutherococcus senticosus – , , , , , .
Grifola frondosa – , , , .
Withania somnifera – , , , , ( ).
Centella asiatica- : , , , , , , .
Ocimum sanctum – , , , (, , , ), , ,
Rhodiola rosea – , , , ,
Codonopsis pilosula – , .

 

, .  :

. ( , , ,MBSR ), , / , : Withania somnifera, Centella asiatica, Verbena officinalis, Rhodiola rosea, Melissa officinalis, Scutellaria lateriflora 341,342
, . 
343-345 (folia Urtica dioica, Zea mays, Folia Taraxacum officinalis), Verbena officinalis, Matricaria recutita346), Viburnum spp., Valeriana officinalis347,348) 349-350 (Crataegus spp., Salvia miltiorrhiza). 
//, : Withania somnifera, Astragalus membranaceus, Cordyceps sinensis 333,339,351.
( , ) (Withania somnifera, Panax ginseng) (Valeriana officinalis, Passiflora incarnata) 339,352,353,354.
, , , . :
Gymnema sylvestre, Panax quinquefolius, Momordica charantia, Ganoderma lucidum, Silybum marianum 325,330,355,356.

 

 

–  

 

. , .
, .
  : Curcuma longa, Ganoderma lucidum, Scutellaria barbata 332,357,358.

. , .
, .
: Curcuma longa, Momordica charantia, Panax ginseng, Ganoderma lucidum, Scutellaria barbata 722-725,332,357,358

, " (Momordica charantia) :

  1. , . 
  2. ( NK), , / .

, . .
 

 .   . 

( 100 ) . .

, , , (). :359-365,329

 
 

 

. ( ) . 
. , , , . " ".
. , .
. . , . 
, (-) .

 

:
 – , . :366-368 Silybum marianum, Schisandra chinensis, Ganoderma lucidum.
( cisplatin) , . , :369,349 

Crataegus spp., Astragalus membranaceus, Salvia miltiorrhiza.

.


 – , . , .
: / .
: Astragalus membranaceus, Ganoderma lucidum, Echinacea spp. '340,370,371.
: Withania somnifera, Angelica sinensis '372,373.

:
374-376 Glycyrrhiza glabra, Althea officinalis, Plantago spp.
/ Zingiber officinalis, Matricaria recutita, Chamaemelum nobile 377.
Taraxacum officinalis Radix Cynara scolymus,378,379.
380-382Taraxacum officinalis Radix, Arctium lappa, Althea officinalis, Glycyrrhiza glabra, Leptandra virginica , Ulmus rubra.
Astragalus membranaceus, Schisandra chinensis, Ulmus rubra 383-385.
386-388 Codonopsis pilosula, Glycyrrhiza glabra, Taraxacum officinalis Radix, Withania somnifera, Panax ginseng, Eleutherococcus senticosus.

 

 – , . .
, , : Ganoderma lucidum, Momordica charantia 389-390
, . , (Curcuma longa) Doxorubicin 391-393 Etoposide.
  .  .

 

 

 

:

  • .
  • , .

 

:

3 | 

  1.  

B |  C |  D |  E | 

 |   |  |  | EGCG |  (MCP)

 |   |  |  Q10

 


, .
, . .

 


3 | 

 

– .

, , ,  zyflamend 10 . 3 .

 


3 , , . , DHA (, , ), 54,55.
3 (, , , ), , ', ( ) .   .
, ,   .
3: , . ( ). 
3 (CRP, IL-1, IL-6, PGE2) ( , , , )394-398 ( )399. IL-10 ( ), , . 394 397,398   6:3 , IGF-1 . 

3 3 , 396.
3-5 ' 3 1-6 .
.

 

 


. . .
400,401  600-1000 " HbA1C . 402.

, 403
, 404,405.

 

 

–  

 

B |  C |  D |  E | 


, ( , '), , , , , . 
( ) 406,407, 408, SAMe 409. .
, . ( ). 
410 2016 (  C, E, ) . , ( ), /, / . , , . (Cachexia) .

(5 80 /) .
.

 

B |  C |  D |  E | 

 

B ( B)
B ( 2-3 ), B : 
, B .
, B B. .
, B . B, .
() . , /  411B. 
, B () .
B ( B12) -DNA . 412-414.
B  ( B2, B3 B5) . , .
B6 () , , (GABA - gamma aminobutyric acid), , , , , 415,416
B, B6, B12, , , , 417-420.
-2016, 18 B . ( ), B , 421
, B6 422. , 5 , B6 PLP ( B6) -30%-50%. B6. 7-35 "/" 423. 

(one-carbon metabolism) DNA, , , (NO) 424
, B6 , , 425,426.
: , , , , 427
, ( ) ( -16 -24.4 /") , BRCA 1/2 428-430ERβ. , .
– B , B . 
B12 (Cisplatin, Pemetrexed) 431. , , B2 432,433Cisplatin. 
, B6 (Cisplatin, Hexamethylmelamine) 434. 300 " , . B6
B3 TRAIL Tumor necrosis factor related apoptosis-inducing ligand  435.
, B . B, . 

 

 

C
C , , , , , , , , .
C , , -436-438DNA. , C 439,440, 441.
-US Department of Agricalture) USDA) -National Cancer Institute) NCI)  5 442. - , 200-280 " C 436.
C C . , . (50-200 ") 443
C ( ) ( 5 ) C . , 444-446
C ( 500 "/) , , . C 447.
C -448-451. C . 150 " -5% -21% 452.
, 500 "/ C 453,454.
- C , 455Gemcitabine. , C ( Ascorbate) (Carboplatin, paclitaxel) . , 456
C . -2014 C , C . C (, , , ) 457.

C , . C 458,459
C 1000 "/, ( Cisplatin) 460,461. , -2016 C -Cisplatin 462. , C Gemcitabine, Erlotinib, Paclitaxel, Carboplatin457. C 1 / 4 (Bortezomib, Melphalan) 463.
C. -2015 6 C ( , , ). 1 / 4 28 10 .

, 459. 5 / C () (cyclophosphamide, methotrexate, 5-fluorouracil) . 464
(500 " ) , B12, 465,466.
, C . . 

 

 

D
D . , D2 ( ), D3, ( , , , ) 467
D , , , 468
D (UVB). , , . , D . ( UVB) D . D. , 10,000-25,000 " D 15 . , , , 469

D 470.

/ D , : (60%-70% ), ' ( -20%-30%), , . D -23% 471-481
D , ,   482-487.

D ( 99 /) -37% 482. D ( -50 /) ( 72 /) 488.
D (400-1100 "/), (400-833 "/).

D 75 /489. D 1800-4000 "/490. (Institute Of Medicine) 4000 "/ 467.
D  . D , , , . , -2010 D ( 100) 491.
, D, . 

 

 

E
E , (, ), , (, , , , , ), , , .
E , -α, β, δ -γ. 
E (d-α-tocopherol). E (dl-α-tocopherol) E E 492-494. E ( ) E .
. - - - . E , -ROS . , , T B, 495COX.
E (-) 496. - , - 497.
, ( ) , (15 "), E ( 30 " -) (50 ") 42% , . 5.25 498.
400 " E 453,454.
E (Gemcitabine) 455.
-ATBC ( -1994) E -34% -41% , 499.

- ( ) 500.
E " " . -SELECT, -NIH , E (400 "/) . -17 501.
-ATBC , E (-) 50 " 499.
E E . , ( ) . 400 " ( -SELECT), E P450 . , 502.
, E Cisplatin. 400-600 "/ E (-) . 3 503,504

, E . . E (), E , , .

, E.

 

 


A () (, , , , , , ) (, , , , ). .
, , , 455,505-508
, 509.
(46%-), (57%-) 510,511.
, -CARET (  1996)  300 " 25,000 "  retinyl palmitate A , 28% 17% ( ) 512.

6 , , , ( ). , . 
-ATBC ( -1994) 20 " -16 499. 6 513.
-CARET, 6 -ATBC, -CARET ( ) 514.
, , . 

 

 

 

–  

 

 |   |  |  | EGCG |  (MCP)

 

, , .
, , , , .

 


. , , , DNA 515. ( , ) 516. , 517,518.
: ( ), , , , , ( ), , , , , , (, , ) . .
: , , 519-521.
( 55 -8 ) 522 ( , ), , .

, . , , . (The Nutritional Prevention of Cancer) 200 " ( 400 ") 523.
524-526. 527. 528.
IgG -IgA /. , 529
, DNA Cisplatin -Mitomycin. (Methyl selenol) 530(Sodium selenite). 
, (, , ) 531
100-400 ". -400 " (). 532.
, ( ), , .

 

, , - . : 35 " , 55 " -600 " . 6 .

PSA . 6 . -14 53 . 10 . 37 3 , .
- . 
. . , 533.

, ( ) 90,91, 400 "532.
. , , .
, , .

 

 

 
.
-DNA ( ), , ROS 534,535
, , , , , , , , , , ; , ( ) .
, -DNA, ( , , , - (SOD) ), ( , , , IGF-1), 536-539
, ( ) , , , . : , , , .
, . , . 540.
/ : , , , , / 541-546.

( -40%). ( )547,548.
( ) () , 549,550
551. , , 549.
( ), (-50%, ), , (. )542-554.
. 555. , NF-kappaB, -DNA, -p53 ( )556-558.

, ( 15 "/) 10 ( )559. , , , 560.
( ) 561Docetaxel.
-10 " , -50 " . (100 " ) .
, . , , . 
, (2016) .

 

 


. , 562-564.
: Heme -Nonheme . , , , , , . , , , , .
Heme , , : , , , , , , , 565-567
, , . , ( 120 ", E 30 ", 6 ",  100 " 20 ") 568.

( 18 ") 569,570. , 571.
, EPIC , Heme , 572,573(  Heme).
, , .

 

 


, , Polygonum multiflorum. , , ( NF-kappaB, TNFα (IL1, IL6, IL12)). , -DNA -RNA 407,574,575
. .

"-", . 576.

Bortezomib. -5 24 . 50% 577. 5 .
. 700 "/" , (2.5-5 ') ( , ).

1 578
. 579, ( 1 4 ) CYP3A4, CYP2D6) P450-CYP2C9)  CYP1A2. . , .

, , .
 

 

EGCG
-3- (EGCG) (Camellia sinensis), 407,580 , ( ), ( NF-kappaB COX2). , EGCG -DNA IGF1.
. , , .
- , , , , , , 580.
EGCG Cisplatin -Oxaliplatin 581. , EGCG 582. , EGCG 583.
EGCG ( ). EGCG .
( I II) EGCG . 440 / 584,585
EGCG VEGF HIF-1 α, 586  587.

(40-660 /) ( 24 , -EGCG 140 /).
 


(MCP)

(MCP) . pH , , . 
MCP 729; 730-731; ( NK ) 732; -3 ( ), 733. GCS-100 , 734
, 735; ( -3)736; , 737-738; , ( ) 737,739
MCP S-trans, transfarnesylthiosalicylic acid (FTS) ( ) 738.
-3 (galectin-3) : , , , , . , -3 T 740. -3 . , , -, , , , , . . , 741.
, -3 , 742. -3.
-MCP -3, -3 .
II 13 . 14.4 / MCP   . 7 10 (70%) , PSA 2.88. 3 13 ( ). 743
, .
 

 

 


 |   |  |  Q10 

 


. , , , . , " ".
, , . 
, . , (-) .

 

:
– , . / Q10.
– , . , , .
: , , : ( ) . 
. .
– , . .

 

, 588 , 589.
, (, , , , , , , ) , , , .
, ( ), 590,591.
, (, , , ) ( '). - 30 (), -5 , 14 589,592-594.
, 595,596
589,597,598.
, ( ) / .

, , ( ) -599-602.
, , , .

 

 

Reactive oxygen species ROS (, , ).
(DHLA) . , , ( E, C )603

ALA , , , , , , , , .
, , , 604,605
. ALA 606-608.
, ALA . ALA CD25 ( T ) -CD95 ( T ) 609,610.
ALA Cisplatin, Oxaliplatin -Docetaxel , , /. - 600 " , 1800 " (600 ", 3 ) 611,612.
Doxorubicin 613. ALA CK -LDH 614.
, -ALA , , 615-617 Doxorubicin.
600-1800 "/. . . , - . 
, , . , , .

 

 

, .
– , . : . , . , . , . , . , . , . .
, 618-620, 621  622.

-20% , B -C, 623-625. , , - , -626,627
. -. , (HPV) . HPV 628,629. () , (-20% 30 ).

( : . , . , . , . )630,631.
( 2 ), : , , , 632-638.

, : . , . . . , . . 2-3 4-12 / . 
, , . , ( 5.5 . , . , . -. ). , . 1-4 10 639-641.
, ( -) , , , 642,643. : 40 . + (GOS), 10 . (). 7-11 2-7 .
, , (. ) , 644.
645Cyclophosphamide.
(). -.

, , - . 646-649, , .
, 632,634. , , ( ) ( , )650.
, 651-656 (3 , ', ). 
, . . 
, ( ) . . .
( 10 ). , , . 
. , , .
. , .

 

 

Q10
Q10 . -DNA .
  Q10 , .
Q10 . 657.
-6 32 ( 90 " Q10 ). 300-390Q10 " 1-3 ! 658.
-Anthracyclines Doxorubicin -Daunorubicine , Q10 659. Q10 , ( ) . , 657,660-662.
Q10 . 300 "663. , Q10 100 " , 664 (CEA -CA15-3), 665.
, Q10 , .

 

 

 
-

, - .
, , , : " ?", " ?", " ?", " ?", " ?", " ?", " ?" .
- .

 

, , . . . - , , .
- , .
, :

  1. - . . : , ( ) (), , "", "" ( , , ...) . , . 
  2. Mindfulness Based Stress Reduction) MBSR) – "" "" ( ). , , , . 8 , 45 , 6 . . : , Hatha yoga . (!) , .
  3. - . , , , , , , ... . : , - ; / (: ). .
  4. - . , . . -5-7 . 15 , , - .
  5. - – , ' , ' . () , (Focusing) . ' ' - , (Life force) , .

.
, ( )666.
MBSR IL6, IL8 -TNFα, 667,668
669.
670  (PCOS). , 671. MBSR 672,673 674

 

, ( , '), , , .
, 675. MBSR . , 676,677
- . , ( Mindfulness), (, ' ' ). 48 78 678.
' 679,680, 681.

, () ,   .
--682. corticotrophin releasing Hormone CRH, (ACTH) , 683. .
, ( VEGF) 682,684.
, , , (NK cells), 685
MBSR, .
MBSR, 686-688.
, , 666.

 

–  

? , .
(, , ) , (NK cells) IL-1β -TNFα -48 689
, (, ) NK, CD25 ( T ), CD56 ( LAK) -CD3 ( T ). , 690,691.
( ) 11 . , (, , )692.

 

, - , .
, . , , , .
- , .
, , , .
MBSR , , , , 693-697. 696,697. MBSR , MBSR , , . , 698.
( ) , 699. 700. , 697,701.
, . , , , , , , , , 696.

 

-

, . 
, . , . 
. , . 
, . . , " ", – "" .
" ", ; , , , , – . , , . , .
? ?
. . 
- . " , . 
, - . , , .
; , , , ; . , - , , .
, , , . " . 
: , , , , "" .

 



, (, , -) .
, . .
, .
, .
" " , . . , , .
. .
. , , , .

 

 

 |   | 

 

  :

 

 |   |   |   |   | 

 

 |   |  |   | ' |  |   |  |   |   |   | 

 

 |  3 |  D |   | 

 


 |   |   |   |   | 

 


( 2016) , , (HbA1c), (CRP), .

, , .
2,413 , , 27-70 . 24 , 4 .

-13 -36% 13 .

. , HbA1C .

, .

: .  

http://www.ncbi.nlm.nih.gov/pubmed/27032109

( 2016) .

685 70 , 45% 55% .

12 87% . 89% , , 36% . 
, ( -) .

.

http://oncology.jamanetwork.com/article.aspx?articleid=2521357

( 2016) , , . 

12 , 10-61% . 

, 19-60% , 23-60% - 27-52% . .

http://www.ncbi.nlm.nih.gov/pubmed/27340121

( 2015) .

(EPIC) 1,095 28 -29 .

4 (NLCS), 383 .

, , 4 , .

, - , , -20% . 

http://www.ncbi.nlm.nih.gov/pubmed/2660793

( 2016) . .

, 220 281 - .

: " " ( ), " " ( ) " " ( , , ).

" " -88% , .

http://www.ncbi.nlm.nih.gov/pubmed/27206698

( 2015) '. 719 3 .

89% , 78% , 54% -45% .

60 .

, 20% , 17% , 17% , 15% , 15% , 4% -5% .

http://www.ncbi.nlm.nih.gov/pubmed/24745936

 ( 2017), , . - ( ), .

38 , 11 , -5 . (Propranolol) - (etodolac).

. . . 

https://www.ncbi.nlm.nih.gov/pubmed/28490464

 (2017) . 280 - , , - , - ( , , / ), ( , ).
560 , . , , 2 3 . 2.5 5 . , 5.68 , 2.17 4.57 . -68% . , , , . 
:

  1. , 1:2, .
  2. , , . 
  3. () . 

https://academic.oup.com/jnci/article/110/1/djx145/4064136/Use-of-Alternative-Medicine-for-Cancer-and-Its

( 2017), , .

. , 46 240 ( 100 ), .

92,295 50-79, 14.6 9,565 (, , , , , , ).

, , BMI . , -10% . , , -10-18% , .  .

, .  
https://www.ncbi.nlm.nih.gov/pubmed/28826845

 

 

 |   |  |   |   

 

-  

 

- ( 2015) . 2,041 2,100 . " " , .

-33% , . , , .

, , , ( ) .

http://www.ncbi.nlm.nih.gov/pubmed/26689397

- ( 2016) .

1,905 2,413 .

-48% ( ). , SCC -12 .

.

http://www.ncbi.nlm.nih.gov/pubmed/26944871

 ( 2017) .

-45,000 , (" "). 1991, 27-44, 4 . 1998, 33-52, . , . -22 1,477 .

40% , . , , , , , , .
https://www.ncbi.nlm.nih.gov/pubmed/28249935

( 2016)    IVF.

19,158 , IVF 1983-1995 -5,950 1980-1995. 2013 53.8 -IVF -55.3 . . -21 839 -109 .

-IVF , 55 3.0% -IVF 2.9% .

-45% 7 IVF , 1-2 . , -23% ( -4 4 ).

IVF . 

http://www.ncbi.nlm.nih.gov/pubmed/27434442

( 2016) -50,000 -14 .  

http://www.ncbi.nlm.nih.gov/pubmed/26997498

( 2016) ( , , , ).

-135,000 ".

5 -, ( 2 ), BMI 18.5-27.5 75 150 .

-28,000 , 4 , ,107,000 , .

* 25% -33% 48% 44% . .

20-40% . 

* :  (population-attributable risk) /

http://www.ncbi.nlm.nih.gov/pubmed/27196525

- ( 2016) .

6,814 -6 -10 , COPD, , , - .

, (153%), (170%), (197%), - COPD,  (271%) (429%).

" ". 

http://www.ncbi.nlm.nih.gov/pubmed/26970999

( 2016) 2006-2014 10 , ,

http://www.ncbi.nlm.nih.gov/pubmed/26811140

( 2016) .

, . 
: , , , , .

.

, , . 
, , 50 4-7, , , 1.5. 
7 , .  5.8% . .

http://www.ncbi.nlm.nih.gov/pubmed/27442501

( 2016)   ,
, -, , ( ), O .

, , .

, . 

http://www.ncbi.nlm.nih.gov/pubmed/27461582

, " (2016) . " 89 -17.5 -77,000 .

3 , ( ), .

, , .  

http://www.wcrf.org/sites/default/files/Stomach-Cancer-2016-Report.pdf

( 2017), -3,000 , - , - .
https://www.ncbi.nlm.nih.gov/pubmed/28535255

( 2016) -10 .

1992 -32,000 -3 - 20-29, 40-49 .

18 3,839 . -21 , 4-7 20-29 -19% -22% 40-49. , . 

http://www.ncbi.nlm.nih.gov/pubmed/27033442

(single nucleotide polymorphisms) ( 2016).

, 17,171 -19,862 5,879 .

, , -24 -68 .

, , , .

BRCA .

, 30 80 11.3%, , 4.4% -23.5%.

(, , ), (BMI , , ) .

.

http://www.ncbi.nlm.nih.gov/pubmed/27228256

 ( 2016) . 2-4 , . , , . , Actinomycetes.

BCG ( : Bacillus Calmette–Guérin) Actinomycetes , . , Actinomycetes .

, . 

https://link.springer.com/article/10.1007%2Fs10654-016-0213-z

 ( 2017) . -17 (3 -14 -), (Epidemiology of Endometrial Cancer Consortium).

8,981 , 17,241 . -11% , , 6-9 . , -BMI .
https://www.ncbi.nlm.nih.gov/pubmed/28486362

,  ( 2017), , - , - . 
https://www.ncbi.nlm.nih.gov/pubmed/28092946

, (EPIC), ( 2016) ( ) 10 . -450,000 , -12.8 .
, :

  1. :

Diet Quality Index International (DQI-I), Healthy Eating Index 2010 (HEI-2010), WHO Healthy Diet Indicator (WHO HDI),Healthy Lifestyle Index (HLI).

  1. :

WCRF/AICR guideline score for the prevention of cancer, Dietary Approaches to Stop Hypertension (DASH).

  1. :

Mediterranean Diet Score (MDS), relative Med diet score (rMED), Mediterranean Style Dietary Pattern Score (MSDPS), Healthy Nordic Food Index (HNFI). 

 

, – HLI BMI, , BMI, .
10 15,200 , 3,761 -7,475 . , . , , , BMI, , , , , -12-25% , -16-24% , -9-22% . 
, , . 
https://www.ncbi.nlm.nih.gov/pubmed/27409582

 

 

-

 

( 2016) -50,000 -14 .  

http://www.ncbi.nlm.nih.gov/pubmed/26997498

( 2016) , , (HbA1c), (CRP), .

, , .
2,413 , , 27-70 . 24 , 4 .

-13 -36% 13 .

. , HbA1C .

, .

: .  

http://www.ncbi.nlm.nih.gov/pubmed/27032109

 ( 2017), .

243 , 5-6 " ( 3,500 ) (4 – -2,500 -1,700 ). 16 , , ( DEXA) , - ( MRI), . 
, SHBG ( : sex hormone binding globulin), ; -; CRP - IL-6 - ( - IL-6 ).

, , .  
https://www.ncbi.nlm.nih.gov/pubmed/28512158

( 2015) 3,754 .

. BMI .

(BMI 40), . -. 

http://www.ncbi.nlm.nih.gov/pubmed/26385214

( 2016)   . , -74,000 , BMI 3 .

( " " ). , , , , , , , , , .

-7% 10 (5% -17% , ). . , .  

http://www.ncbi.nlm.nih.gov/pubmed/27529652

    ( 2017) ,  .

36,794 50-79, 3 . -3 : ( 5% ), ( 5%) ( 5%) "" " " . 11.4 , 566 .

, -29% . , . ( 4.5 ") , .  

https://www.ncbi.nlm.nih.gov/pubmed/28165909

 ( 2017) .

143 , - . , BMI , , , -, C .

, BMI , , , C . , .
https://www.ncbi.nlm.nih.gov/pubmed/28168180

 ( 2017) - , .

204 - -36 . , : , , , , , , , , , . .
https://www.ncbi.nlm.nih.gov/pubmed/28246088

"  (2017), , ,
, -2012 1.7 , . 119 -12 -260,000 . 
:
: , (18-30) ( . ) ; : .  
: ( - ER negative), , ,
:
: ( ), 18-30; : , , .  
: ( - (ER negative,
" :

  1. : 12, 55, - 30.
  2. , .
  3. .  

" , , .
http://www.aicr.org/continuous-update-project/breast-cancer.html

( 2016) (IARC) . 2013-2014, , 10.8% , 14.9% -5.0% (BMI>30).

, . 2002, : , , , ( ) .

, -1,000 , 8 : , , , , , , () . , -3 : , () .

. , - .  

http://www.ncbi.nlm.nih.gov/pubmed/27557308

( 2016) - 22,000 -22,000 LDL .  

http://www.ncbi.nlm.nih.gov/pubmed/26992435

  . , ( 2013) , . (12% ) (60% ). , , . , . , .

http://www.ncbi.nlm.nih.gov/pubmed/24156623

( 2016)
( -) .

. PDAC .

, , - - PDAC

http://www.ncbi.nlm.nih.gov/pubmed/27246539

( 2016) .

.

PlGF/VEGFR-1 .

(TAM), , VEGFR-1 -.

PlGF -.

http://www.ncbi.nlm.nih.gov/pubmed/26861455

( 2016)  

http://www.ncbi.nlm.nih.gov/pubmed/26756352

- ( 2017) ( , , , , , , , , ).

, 18,688 -24,751 62 -63 . -12 1,656 .

- BMI, , - ( -11%, 13%, 9% -15%, , ). , -BMI, , -16%, 21%, 15% -20%, . , , . 
, .
https://www.ncbi.nlm.nih.gov/pubmed/28441380

 

 

-

 

( 2016) , , (HbA1c), (CRP), .

, , .
2,413 , , 27-70 . 24 , 4 .

-13 -36% 13 .

. , HbA1C .

, .

: .  

http://www.ncbi.nlm.nih.gov/pubmed/27032109

 ( 2017) .

143 , - . , BMI , , , -, C .

, BMI , , , C . , .
https://www.ncbi.nlm.nih.gov/pubmed/28168180

 ( 2017), 1998-2010, 2 -30% , . ( 2) 55, .
https://www.ncbi.nlm.nih.gov/pubmed/28436468

 

 

-

 

( 2016), , . , .
2003-2009, 6 , 58,148 , 39,183 , , 775 .

, ( + ) , 2.74 -5.4 , 3.74 15 .

53% , 13% 59% . 
, , . 

http://www.ncbi.nlm.nih.gov/pubmed/27467055

( 2016)   . , -74,000 , BMI 3 .

( " " ). , , , , , , , , , .

-7% 10 (5% -17% , ). . , .  

http://www.ncbi.nlm.nih.gov/pubmed/27529652

"  (2017), , ,
, -2012 1.7 , . 119 -12 -260,000 . 
:
: , (18-30) ( . ) ; : .  
: ( - ER negative), , ,
:
: ( ), 18-30; : , , .  
: ( - (ER negative,
" :

  1. : 12, 55, - 30.
  2. , .
  3. .  

" , , .
http://www.aicr.org/continuous-update-project/breast-cancer.html

 

 

-

 

24 ( 2016) 

http://www.ncbi.nlm.nih.gov/pubmed/26836587

Shenling Baizhu San (: SBS) . 10 : Panax ginseng, Atractylodes macrocephala, Wolfiporia extensa, Glycyrrhiza glabra, Dioscorea opposite, Dolichos lablab, Nelumbinis Nucifera, Coix lacryma-jobi, Amomum, Platycodon grandifloras.

( 2015), ,

http://www.ncbi.nlm.nih.gov/pubmed/25897964

 

 

 

 |   |   |   |  3  | 

 

-

 

- ( 2016) .

, 5,145 4,097 .

-26% . . , , 1-2, 2-2.5 2.5 -22%, 41% -54%, .

.
: (NIH). .

http://cebp.aacrjournals.org/content/25/4/634.full.pdf+html

( 2016) . .

, 220 281 - .

: " " ( ), " " ( ) " " ( , , ).

" " -88% , .

http://www.ncbi.nlm.nih.gov/pubmed/27206698

( 2015)    (Fagopyrum esculentum) 

, ,  , , -, - - - .

- , D-chiro-inositol, , . 

http://www.ncbi.nlm.nih.gov/pubmed/26270637

( 2015) . , .

http://www.ncbi.nlm.nih.gov/pubmed/26467752

- ( 2017) , , .

18 , 2 -2,905 , 8 - 1,825 -4,652 . -2 -35% , - ( 29% 67%). , , , 2, B C. , , -2 -14% . 
, , , , ; - , -DNA; (); 2. 
, .
https://www.ncbi.nlm.nih.gov/pubmed/28490552

 ( 2017), , . 15,950 55 .

3,340 (20.4%) (nonadvanced), 1,643 (10%) (advanced) 189 (1.2%) .

. , . . .
https://www.ncbi.nlm.nih.gov/pubmed/28468894 

, ,
. -500,000 -10 . -16 , 41,693 . , ( 3 ) ( -12% -7% ). . ( -60% -40% ). , , -22% , -30% -30% . - -15,000 CRP . , . 
. , 1993-1996 ' , -185,000 -, , . -16 , 58,397 . , -12% 1 , 18% 2-3 -18% 4 . , . , 55 . , , , ,

, , , ( ). , , , , , , , . . , . , , - . , .

 https://www.ncbi.nlm.nih.gov/pubmed/28693038

https://www.ncbi.nlm.nih.gov/pubmed/28693036

( 2017), , .

-93,000 , 1995-1998 2012. 2,482 . , , : (" "), . , , , , , . , , , , , , , . , , .

-15% , , . . . . .
https://www.ncbi.nlm.nih.gov/pubmed/28526274

 (2017), (AICR) (WCRF), .

, 2007, 99 ( ) - -29 -250,000 . , ( ), , (-500 '/), , , , , . , , - C, , D -, ( -100 ) ( ) . 
- , , , , , , , 3 , , , , , , , , , , A, B6, E, , , -, , , . 
-47% , . 
http://www.aicr.org/continuous-update-project/colorectal-cancer.html

- ( 2017), 631 879 , ( ) -22% , . , .
https://www.ncbi.nlm.nih.gov/pubmed/28742092

 

 

-

 

- ( 2015) PSA ( ) .

183 1.6 ( 2 ).

PSA, -11.1 - 15.6 -12.9 -14.5 .

, MnSOD AA , (1.8 12 ).

http://www.ncbi.nlm.nih.gov/pubmed/26169045

( 1) (Vitis rotundifolia) ( 2015).

14 , 500-4,000 ", -.

4,000 " .

6-30 .

4 . 6 ( ), .

PSA -5.3 ( , p=0.17), . 2 (500 ") (4,000 "). 

: . . 

http://www.ncbi.nlm.nih.gov/pubmed/26012728

- ( 2016) - , , .

http://www.ncbi.nlm.nih.gov/pubmed/27339168

    ( 2017), .

-200,000 , 9-15 17,681 . .

, , . . -3 " , , .  
:    . 

https://www.ncbi.nlm.nih.gov/pubmed/28142032

( 2015), 300,000 ( ) ,

http://www.ncbi.nlm.nih.gov/pubmed/26607934

, - ( 2016) -1,500 -1,500 . - -

http://www.ncbi.nlm.nih.gov/pubmed/26791185

( 2015) , , .

, , .

22 ( ) 21 14 (7 , -50 ). .

, , (p<0.01) * (p<0.05) . , - (genotoxicity) (p<0.01).

, . 
* , , .

http://www.ncbi.nlm.nih.gov/pubmed/26428278

( 2016) . -90,000 27-44 1991 -44,000 13-18 1998.

2013 3,235 , .

, -3 -25% -0.5 , . .

, , . , - .

, .

.

.
:  - - (, , , ) - (, , , , , ).

http://www.ncbi.nlm.nih.gov/pubmed/27170029

    ( 2017), .

-200,000 , 9-15 17,681 . .

, , . . -3 " , , .  
:    . 

https://www.ncbi.nlm.nih.gov/pubmed/28142032

( 2016), -46,000 23 , (TMPRSS2:ERG-positive), . 

https://www.ncbi.nlm.nih.gov/pubmed/26817504

- (2017)   ,  , .

142 , 95 -2 . 200 -8%, -16% , -8% , -3% -10% . . , 800 (10 ), .

, , , , . , , 5.6 2013 500 , 7.8 800 .

, .  

https://academic.oup.com/ije/article/3039477/Fruit

 ( 2016) -   , , , ,

https://www.ncbi.nlm.nih.gov/pubmed/25872898

 ( 2016) 8 , .
https://www.ncbi.nlm.nih.gov/pubmed/26753515

 ( 2017) - . 
https://www.ncbi.nlm.nih.gov/pubmed/28488765

( 2015) -  Allium,   (Allium cepa) ,   .

  , . , - .

   .

http://www.ncbi.nlm.nih.gov/pubmed/25586902

( 2014) - , , -

http://www.ncbi.nlm.nih.gov/pubmed/24984103

(2014) , , , ,

http://www.ncbi.nlm.nih.gov/pubmed/25250322

, , .

, - - .

( 2015) - , , , , EGCG, , , '' .

.

http://www.ncbi.nlm.nih.gov/pubmed/25693744

( 2016) .

5 , . , diethylnitrosamine (DEN). .

http://www.ncbi.nlm.nih.gov/pubmed/26865652

( 2015) - docetaxel

http://www.ncbi.nlm.nih.gov/pubmed/26200777

(2015), - -

http://www.ncbi.nlm.nih.gov/pubmed/25624761

( 2015)  (Petroselinum crispum) - -DNA,

http://www.ncbi.nlm.nih.gov/pubmed/25582089

( 2015) - (Betanin), , . 

http://www.ncbi.nlm.nih.gov/pubmed/26463240 

(2015) - . 

http://www.ncbi.nlm.nih.gov/pubmed/26320438

 ( 2016) . 
https://www.ncbi.nlm.nih.gov/pubmed/27120393

 ( 2017) - ( ) . 
https://www.ncbi.nlm.nih.gov/pubmed/28528091

, - ( 2017), C .

49 -1,105 1,449 . , , -34% -, 30% -, 35% -, 25% -26% C.

, C . , .
https://www.ncbi.nlm.nih.gov/pubmed/28293540

,  ( 2017), , , .
https://www.ncbi.nlm.nih.gov/pubmed/28698610

 

 

-

 

-90,000 ( 2016)

http://pediatrics.aappublications.org/content/early/2016/01/28/peds.2015-1226

- ( 2016) . 14 (48,052 ), (16,882 ), (19,489) (1,092 ).

, -19% -18% .

, . . 

http://www.ncbi.nlm.nih.gov/pubmed/27193606

 ( 2016) - , Avemar. .
https://www.ncbi.nlm.nih.gov/pubmed/27245162

 

 

-

 

- ( 2016) , , D -.

490 656 - . , , , , - , . 
, -, . ( ) ( 1200 " -49% 478 " ), D . , 23 -29% -6 .

, , -. 

https://www.ncbi.nlm.nih.gov/pubmed/27632371

, , .

1,854 , 321 . -50% . , .

, -. , . .  

https://www.ncbi.nlm.nih.gov/pubmed/27595916

659 699 ( 2015) , . 

http://www.ncbi.nlm.nih.gov/pubmed/26551148

(2015) - .

: , C -E.

, , .

-, . . , , , , , . , .

  . . 

http://www.ncbi.nlm.nih.gov/pubmed/26156538

( 2016) , , , , , .

6 , 100 ( -11% , 15% , 17% -19% ), .

50 (4% , 8% , 9% , 18% , 19% , 13% , 22% , 24% , 32% ).

, , , .

, , . , .  

https://www.ncbi.nlm.nih.gov/pubmed/27597529

( 2017) . , .

, -18,000 - 9.4 . , (38% ) (13-14% ) -7% -14%, , . squamous cell -small cell carcinoma. , -8% .

5% 16-17% squamous cell -small cell carcinoma. . , .
https://www.ncbi.nlm.nih.gov/pubmed/28742456

 

 

- 3

 

( 2016), 3 1,659 .

3 , 0.3 3 -40% , 0.1 3. , 3 0.15 -70% 3. 3 .

3 .  

http://www.ncbi.nlm.nih.gov/pubmed/27436272

( 2015) - - -3 , . 

http://www.ncbi.nlm.nih.gov/pubmed/25684599

 ( 2016) .  

https://www.ncbi.nlm.nih.gov/pubmed/27996158

 

 

-

 

( 2016) , . -48,000 30-49. -19 206 , ( ) .

, .  

http://www.ncbi.nlm.nih.gov/pubmed/27010988

, -.

, ( ), , , , , 2 , , . , , ( ).

, - .  
:  . : http://www.naturopedia.com/article.asp?rId=880

https://www.ncbi.nlm.nih.gov/pubmed/27723080

, ( 2017), ', , ( ) - , ' .

 https://www.ncbi.nlm.nih.gov/pubmed/28148690

 

 

 

 |   | 

 

-

 

-  ( 2017) - .

-62,000 55-69, 1986 -20 . -.

2,321 1,665 , - 40% (ER-). (ER+) . 
, - . , , -6% , -2% , -27% -23% . -
https://www.ncbi.nlm.nih.gov/pubmed/28260236

- ( 2016)  - .

, 100 , , , . - .

. - , ( -29%, 57% -30%, ).

- -14% (13 ) (4%, 3 ) (9%, 9 ).

,  , . , , , , .

, , 2 .  

http://www.ncbi.nlm.nih.gov/pubmed/27428849

( 2015)   -   , -. , - .

, , , , , .

, , , , , , .

- . , - .

http://www.ncbi.nlm.nih.gov/pubmed/27014505

 

 

-

 

-26,000 ( 2015) -35%

http://www.ncbi.nlm.nih.gov/pubmed/26561618

( 2016), , . -11,000 55-69 ( 1986), -5 (, , , 2-5 , 6-7 ).

-20 279 , 312 -399 . , .

, -75% . , .  
: , .
, , .

http://www.ncbi.nlm.nih.gov/pubmed/26931668

 

 

-

 

- ( 2015), , - - .

, .

, - - -, .

- .    

http://www.ncbi.nlm.nih.gov/pubmed/26631612

177 ( 2016) 10-18 25-29.
: .

http://www.ncbi.nlm.nih.gov/pubmed/27197283

( 2017) . , .

, -18,000 - 9.4 . , (38% ) (13-14% ) -7% -14%, , . squamous cell -small cell carcinoma. , -8% .

5% 16-17% squamous cell -small cell carcinoma. . , .
https://www.ncbi.nlm.nih.gov/pubmed/28742456

 

 

 

( 2016) .

  • , -1.4 " , . 10-27 -187,000 , , -13 : , , , , , , , , , , , . , . , .
  • 9 . 8,309 12,612 . -34% .
  • - . 128 512 . , 2.5 . 

, - .  

http://www.ncbi.nlm.nih.gov/pubmed/27183032

http://www.ncbi.nlm.nih.gov/pubmed/27197285

http://www.ncbi.nlm.nih.gov/pubmed/27105330

( 2016) -9 . 8,309 12,612 . 

-34% . 

, . 

( 2016) -12 6,806 5 . 

-22-34% .

http://www.ncbi.nlm.nih.gov/pubmed/27197285
http://www.ncbi.nlm.nih.gov/pubmed/27299959

- ( 2017) : , , . - 113 , 11,525 , 1999-2016.

, - (p<0.001), . , , - . .
https://www.ncbi.nlm.nih.gov/pubmed/28253393 

( 2016) , , . 

12 , 10-61% . 

, 19-60% , 23-60% - 27-52% . .

http://www.ncbi.nlm.nih.gov/pubmed/27340121

, , , , , , , . 

https://www.ncbi.nlm.nih.gov/pubmed/24282099

"  (2017), , ,
, -2012 1.7 , . 119 -12 -260,000 . 
:
: , (18-30) ( . ) ; : .  
: ( - ER negative), , ,
:
: ( ), 18-30; : , , .  
: ( - (ER negative,
" :

  1. : 12, 55, - 30.
  2. , .
  3. .  

" , , .
http://www.aicr.org/continuous-update-project/breast-cancer.html

( 2016) (IARC) . 2013-2014, , 10.8% , 14.9% -5.0% (BMI>30).

, . 2002, : , , , ( ) .

, -1,000 , 8 : , , , , , , () . , -3 : , () .

. , - .  

http://www.ncbi.nlm.nih.gov/pubmed/27557308

-  ( 2017) .

160 , 208 766 , " (Roswell Park Cancer Institute) 1989-1998 . , , -4 " ".

-77% -73% . . , .  
https://www.ncbi.nlm.nih.gov/pubmed/28528291

 ( 2017) , .

299 57 . - 7 (), . , .

. , . ,
https://www.ncbi.nlm.nih.gov/pubmed/28677009

 

 

 

( 2016) .

322 : 6 .

(, , ) ( ) 6 6 .

, , .

https://www.nlm.nih.gov/medlineplus/news/fullstory_159172.html

240 ( 2014) .  

http://www.ncbi.nlm.nih.gov/pubmed/25090913

121 ( 2016)

http://www.ncbi.nlm.nih.gov/pubmed/26853501

, , , , , , , . 

https://www.ncbi.nlm.nih.gov/pubmed/24282099

" ( 2017), , ,
1990-2015, : 

  • /: , , .
  • / : , , , .
  • : .
  • : .

, , , , ,
" -- , . , . 
, -, . , .
https://www.ncbi.nlm.nih.gov/pubmed/28436999

 

 

 |   |  |   | ' |  |   |  |   |   |   | 

 

 

 ( 2017) .

. , .

149 , 26 (17.4%) , , 4 (2.7%) . 2.5 (p=0.03).
, 149 , 84 (56.4%) -, 75 (50.3%) 122 . , . : (Allium sativum), (Aloe barbadensis/capensis), (Annona muricata), (Camelia sinesis), (Echinacea angustifolia), - (Ginkgo biloba), (Matricaria recutita), (Moringa oleifera), ' (Panax ginseng), , (Uncaria tomentosa), (Valeriana officinalis), (Vitis vinifera). , , . , . 
: .
, , . .
https://www.ncbi.nlm.nih.gov/pubmed/28628392

( 2016) , (Serenoa repens), - . 
27 , , 960 ", . , 21 , 22 .

(IPSS) ( ) . , 2 11 0 10 .

960 " .

http://www.ncbi.nlm.nih.gov/pubmed/26891611

- ( 2015) '' .

60 5 '' .

'' . , , .

http://www.ncbi.nlm.nih.gov/pubmed/26051575

- ( 2015) , Goshajinkigan, . 11 : Rehmannia glutinosa, Achyranthes fauriei, Cornus officinalis, Paeonia suffruticosa, Alisma plantago-aquatica, Dioscorea japonica, Dioscorea opposite, Plantago asiatica, Wolfiporia extensa, Aconitum carmichaelii, Cinnamomum cassia.
182 mFOLFOX6 (: , ) 7.5 3 . 2 50.6% -31.2% .

http://www.ncbi.nlm.nih.gov/pubmed/25627820

- ( 2015) .

56 . 15 " 4 14 , .

( 2.39 -1.07 7 -0.32 14 ). , ( 2.39 -2.75 7 -2.89 14 ).

http://www.ncbi.nlm.nih.gov/pubmed/25667123

- ( 2015) - (Cynara scolymus)  ( / ).

http://www.ncbi.nlm.nih.gov/pubmed/26136339

- ( 2015) Dehydroandrographolide, (Andrographis paniculata), . 
https://www.ncbi.nlm.nih.gov/pubmed/26356821

- ( 2015) . 22 -2,300 .

-15 , -7 -3 .

    , .

 http://www.ncbi.nlm.nih.gov/pubmed/25698710

( 2015) -

, .

:

( ); ( Artemisia); Baicalin -Baicalein ( Scutellaria baicalensis); ( Berberis); ( - Betula papyrifera), ( Capsicum); ( Curcuma longa); ( ); ( , ); EGCG ( Camellia sinensis); ( Acacia greggii); ( Trifolium pratense); (  Vitis vinifera); ( ); Gambogic Acid ( Garcinia hanburyi); ' ( ' Panax); Glycyrrhiza uralensis, ( Gossypium hirsutum); ( Terminalia chebula); (Magnolia);  ( ); Oridonin  Rabdosia rubescens;  ( ); Phenethyl-isothiocyanat ;  ( Vitis vinifera);  ( ); Sanguinarine ( Sanguinaria Canadensis); ( Silybum marianum); - Thymoquinone ( Nigella sativa); ( Cornus officinalis).

http://www.ncbi.nlm.nih.gov/pubmed/25875508

( 2015) . 8 , " 798 . 

.

: Astragalus membranaceus, Angelica sinensis, Paeonia japonica, Atractylodes ovata, .

http://www.ncbi.nlm.nih.gov/pubmed/26275657

 ( 2017) - .
, (Gemcitabine), 3,3-Diindolylmethane , Thymoquinone (Nigella sativa), Cucurbitacin B, , - sulforaphane, , Dimethylaminoparthenolide - (Tanacetum parthenium) -Piperlongumine (Piper longum).
, , . 
, . , , , ', , . : , wogonin ( ), apigenin -chrysin . 
- (Ginkgo biloba), (Curcuma longa), (Viscum album) '. Huang-Qin-Tang PHY906 , : (Scutellaria baicalensis), (Glycyrrhiza uralensis), (Paeonia lactiflora) (Ziziphus jujuba).
https://www.ncbi.nlm.nih.gov/pubmed/28232946

 ( 2016), , .

- . , -, , , [ (Silybum marianum)],  Phytol ( ), (Glycyrrhiza glabra), (Scutellaria baicalensis) Baicalein, (Coix). , PHY906 : Scutellaria baicalensis, Glycyrrhiza uralensis, Paeonia lactiflora, Ziziphus jujube. 

https://www.ncbi.nlm.nih.gov/pubmed/26879574

 (2016) - , , , PEITC ( -Phenethylisothiocyanate) , Aloe Emodin [ (Aloe vera)] , - Dioscin ( Dioscorea villosa), , , . 
https://www.ncbi.nlm.nih.gov/pubmed/26791479

 ( 2017) .

21 ( ), . , , , -. , , . , '' (Zingiber officinale), 0.5-1 . (Mentha piperita) (Mentha spicata) . 
. , .  
https://www.ncbi.nlm.nih.gov/pubmed/28193133

 ( 2016) , . : (Withania somnifera), (Tribulus terrestris), (Asparagus racemosus), (Azadirachta indica), (Ocimum sanctum) '' (Zingiber officinale). 
https://www.ncbi.nlm.nih.gov/pubmed/27681646

( 2015) . .

.

, , , , EGCG ( ), , , , '' . 

http://www.ncbi.nlm.nih.gov/pubmed/26503998

( 2015) -  Allium,   (Allium cepa) ,   .

  , . , - .

   .

http://www.ncbi.nlm.nih.gov/pubmed/25586902

( 2015) . , , . 22 (Paullinia cupana) (Ganoderma lucidum) .

, . 

http://www.ncbi.nlm.nih.gov/pubmed/25811312

( 2016) . fisetin, EGCG, , , , , , , , -3- .

http://www.ncbi.nlm.nih.gov/pubmed/26864554

( 2015)  . -.

EGCG, , , , -, ', .

- .   

http://www.ncbi.nlm.nih.gov/pubmed/26184171

( 2015) -  (Phyllanthus emblica), .

http://www.ncbi.nlm.nih.gov/pubmed/26180601

( 2015) - 6 -. :  rottlerin  Mallotus philippensis;  berbamine (Berberis);  sparstolonin B Sparganium stoloniferum;  sulforaphane ()  ;  plumbagin  Plumbago zeylanica  (6)-shogaol '' (Zingiber officinale).

- .

. , .

http://www.ncbi.nlm.nih.gov/pubmed/26695359

( 2015)   .

. , , .

, .

, . , -.

, , ; .

, , , .  

http://www.ncbi.nlm.nih.gov/pubmed/26325482

( 2015)   , ' (Panax ginseng), , ,   (Camellia sinensis), ' , (Allium sativum), , '' . 

http://www.ncbi.nlm.nih.gov/pubmed/26651248

( 2015) - ( - HCC).

ALT -HCC.

, ALT .

, - HCC.

: Sho-saiko-to, Juzen-taiho-to, SNMC (Scutellaria baicalensis) ' '.

- HCC. 

http://www.ncbi.nlm.nih.gov/pubmed/26457019

 ( 2016) - , (, , , , ), . 

https://www.ncbi.nlm.nih.gov/pubmed/27057273

 ( 2016) - - (Olea europea).

, , , . - -DNA. , NF-κB , . .
https://www.ncbi.nlm.nih.gov/pubmed/27548217

, , , , , , , . 

https://www.ncbi.nlm.nih.gov/pubmed/24282099

(- 2015) . -397 .

, - 28% , 22% -22% (92%) .

34% , - Urtica dioica (-22% ), Foeniculum vulgare (- 20% ) (10%).

52% -38% .

, .

http://www.ncbi.nlm.nih.gov/pubmed/26465625

- (2016), , (Yerba mate) 60% .  

https://www.ncbi.nlm.nih.gov/pubmed/27039789

( 2015) .

. , -16 . 339 (80.3%), 44 -3 , (Urtica dioica), (Allium sativum), (Nigella sativa) (Curcuma longa) .

-29 .

, -15 , P450. : Allium sativum, Camellia sinensis, Curcuma longa, Foeniculum vulgare, Ginkgo biloba, Hypericum perforatum, Matricaria recutita (chamomilla), Melissa officinalis, Mentha piperita, Panax ginseng, Polygonum, Silybum marianum, Thymus vulgaris, Trifolium pratense, Vitis vinifera.

18 , :  Allium sativum, Camellia sinensis, Cuminum cyminum, Curcuma longa, Ferula asafetida, Foeniculum vulgare, Ginkgo biloba, Hippophaerhamnoides, Linum usitatissimum, Nerium oleander, Nigella sativa, Olea europaea, Panax ginseng, Thymus vulgaris, Trifolium pratense, Trigonella foenum-graecum, Vitis vinifera, Zingiber officinale.

-7 :  Curcuma longa, Ganoderma lucidum, Linum usitatissimum, Nigella sativa, Panax ginseng, Silybum marianum, Viscum album.

, .

:  , , . , , .
. , .

http://www.ncbi.nlm.nih.gov/pubmed/26599199

( 2014) (Holoil®) (Hypericum perforatum) (Azadirachta indica) .

28 ( , ) .

, .

http://www.ncbi.nlm.nih.gov/pubmed/25544371

(2015), Network pharmacology, "Triphala", , , . 

https://www.ncbi.nlm.nih.gov/pubmed/26477351

( 2015) -.

. , .

2,439 - -3,575 - (, , ).

- 492 .

-.  

http://www.ncbi.nlm.nih.gov/pubmed/26074488

( 2015) , ,

http://www.ncbi.nlm.nih.gov/pubmed/26047758

( 2014) Cyclophosphamide

http://www.ncbi.nlm.nih.gov/pubmed/25595312

( 2015) , , , " ( ). 

http://www.ncbi.nlm.nih.gov/pubmed/25695860

( 2015)

http://www.ncbi.nlm.nih.gov/pubmed/25962735

( 2014) -

http://www.ncbi.nlm.nih.gov/pubmed/25005066

( 2015) gemcitabine

http://www.ncbi.nlm.nih.gov/pubmed/25672620

( 2015) .

http://www.ncbi.nlm.nih.gov/pubmed/26087719

( 2015) - (Smilax Glabra). 

http://www.ncbi.nlm.nih.gov/pubmed/25732255

( 2015)

http://www.ncbi.nlm.nih.gov/pubmed/26176704

( 2015) - . 

http://www.ncbi.nlm.nih.gov/pubmed/26204945

( 2015) - (Olea europaea)  . 

http://www.ncbi.nlm.nih.gov/pubmed/26193251

(2015) - (Melissa officinalis) , , . 

http://www.ncbi.nlm.nih.gov/pubmed/26320439

(2015) - (CRUEL) . (Piper Nigrum), (Glycyrrhiza glabra), (Moringa Oleifera) (Ocimum sanctum). 

https://www.ncbi.nlm.nih.gov/pubmed/26745095

( 2015) (Trifolium pratense) . .

https://www.ncbi.nlm.nih.gov/pubmed/26530625

  (Moringa oleifera) .

https://www.ncbi.nlm.nih.gov/pubmed/27074620

( 2017), , , .

, , . 98 , 42 . , : (Triticum aestivum), (Viscum album), '' (Zingiber officinale), (Ephedra campylopoda) (Viscum cruciatum). .

'' - . , , , '', . , '' . .

, , .

https://www.ncbi.nlm.nih.gov/pubmed/28238155

 ( 2016) (Salvia miltiorrhiza) (ROS).
https://www.ncbi.nlm.nih.gov/pubmed/27579153

 ( 2016) - . (Scutellaria barbata), (Lobelia chinensis), (Solanum nigrum) -Hedyotis diffusa, - .

- (p<0.01) - Hedyotis diffusa . . temozolomide. 
https://www.ncbi.nlm.nih.gov/pubmed/27843296

 ( 2015) - (Ziziphus Jujube) . 
https://www.ncbi.nlm.nih.gov/pubmed/26718441

 ( 2015) , , .
https://www.ncbi.nlm.nih.gov/pubmed/26667771

 ( 2016) (Lepidium meyenii) -, .
https://www.ncbi.nlm.nih.gov/pubmed/27681649

( 2014) '     (cisplatin).

(). , ' 50 " " . ' .

http://www.ncbi.nlm.nih.gov/pubmed/25495691

- (Astragalus membranaceus) 500 "/"

https://www.ncbi.nlm.nih.gov/pubmed/26719057

 ( 2016), , (5-)
60 , , . 
4 30 - . , , -15 " (Salvia officinalis) (Thymus vulgaris) (Mentha piperita). 0-4, . 4-7 5 14 .

70% (10% 1 -20% 2), 40% (53.3% 1 -6.7% 2), p=0.001. -14 , (93.3% -96.7%). .
https://www.ncbi.nlm.nih.gov/pubmed/27515877

 ( 2016) 85, 4. 5 , , : (Codonopsis pilosula), (Astragalus membranaceus), (Atractylodes macrocephala), (Poria cocos), (Scutellaria barbata), (Salvia miltiorrhiza) (Prunella vulgaris).

, , .
https://www.ncbi.nlm.nih.gov/pubmed/26597286

 (2016) (Anorexia Cancer Cachexia Syndrome), , , , .
https://www.ncbi.nlm.nih.gov/pubmed/27758689

 ( 2017) - (Salvia officinalis) (Salvia miltiorrhiza) . 
https://www.ncbi.nlm.nih.gov/pubmed/27930987

 (2016) '' (Zingiber officinale) (doxorubicin). 150 , '' 500 " 3 , .
1-3 3 . . , '', . , 85 (doxorubicin60 mg/m2 + cyclophosphamid 600 mg/m2), '' ( 0.64 1.13, p<0.05). '' , -. , '' .  
: .  
https://www.ncbi.nlm.nih.gov/pubmed/27644633

 ( 2017) -50 (Hypericum perforatum) (Azadirachta indica) . 
https://www.ncbi.nlm.nih.gov/pubmed/28101834

- (2016) - 3 : (Ganoderma lucidum), (Lentinus edodes) (Grifola frondosa). 
https://www.ncbi.nlm.nih.gov/pubmed/28008808

 ( 2017) - ( ) . 6 : Rhus verniciflua, (Ulmus rubra), (Polygonatum Sibiricum), ' (Lycium chinense), (Ganoderma lucidum) ' (Panax ginseng). 
https://www.ncbi.nlm.nih.gov/pubmed/27626609

,  (2017), .

. , , . , .

, . - (STAT3, mTORC1, AMPK). .
https://www.nature.com/articles/s41698-017-0024-z

 (2017) Thymus alternans ( ) , - . 
https://www.ncbi.nlm.nih.gov/pubmed/28222613

 ( 2016) Aurora A kinase, . , San Huang Decoction, , (Rheum spp) (Coptis chinensis).
https://www.ncbi.nlm.nih.gov/pubmed/27461831

( 2016), , .

, 466 , 2000-2010, : .

-70%, . : (Salvia miltiorrhiza), (Astragalus membranaceus), (Dioscorea villosa), (Rehmannia glutinosa) (Glycyrrhiza glabra). 
https://www.ncbi.nlm.nih.gov/pubmed/26773538

 (2016) . , , . , , , , .

, , , , . , : + , + EGCG, + (Corydalis ambigua), (Scutellaria baicalensis), (Ganoderma lucidum) .
https://www.ncbi.nlm.nih.gov/pubmed/26638885

 

 

 

( 2014) 1-3

(Polyphenon E) , 400 ", 600 " 800 ", 6 . 

HGF (12.7%- 6.3%), . , .

.  

http://www.ncbi.nlm.nih.gov/pubmed/24646362

- ( 2015) . 13 -.

6 , -22% . 11% . 
9 , . , , . 

http://www.ncbi.nlm.nih.gov/pubmed/26138307

( 2015)   . 
- -, . 
EGCG, -. , , , , , , .

, .

http://www.ncbi.nlm.nih.gov/pubmed/26177066

( 2015)   , ' (Panax ginseng), , ,   (Camellia sinensis), ' , (Allium sativum), , '' . 

http://www.ncbi.nlm.nih.gov/pubmed/26651248

(2016) - , .

3 , -EGCG Ziziphus jujube.

, - ( ) ( ).

https://www.ncbi.nlm.nih.gov/pubmed/26156544

- ( 2017) . ( -) , 400 "/ EGCG 600 "/ 12-30 .

, . , , , , 7 . -60% .

, . 
https://www.ncbi.nlm.nih.gov/pubmed/28353571

, - (2016), - (Camellia sinensis), , .
https://www.ncbi.nlm.nih.gov/pubmed/27221834

( 2015) . .

.

, , , , EGCG ( ), , , , '' . 

http://www.ncbi.nlm.nih.gov/pubmed/26503998

( 2013) . . . , , . , , , , . 

http://www.ncbi.nlm.nih.gov/pubmed/24172305

http://www.ncbi.nlm.nih.gov/pubmed/24172300

-  ( 2017) PSA , -PSA
22 PSA 4-15 . 12 . 4 100 " , 30 " -100 " , 4 ( -8 ). , . , .

-PSA . , , -PSA, . 

https://www.ncbi.nlm.nih.gov/pubmed/28181675

( 2015) , , , " ( ). 

http://www.ncbi.nlm.nih.gov/pubmed/25695860

 

 

 

 ( 2015) - - , 2011-2015 , , .

https://www.ncbi.nlm.nih.gov/pubmed/26418821

 ( 2015) - - , , , DIM.
https://www.ncbi.nlm.nih.gov/pubmed/26481373

-  ( 2017) PSA , -PSA
22 PSA 4-15 . 12 . 4 100 " , 30 " -100 " , 4 ( -8 ). , . , .

-PSA . , , -PSA, . 

https://www.ncbi.nlm.nih.gov/pubmed/28181675

( 2015) .

. , -16 . 339 (80.3%), 44 -3 , (Urtica dioica), (Allium sativum), (Nigella sativa) (Curcuma longa) .

-29 .

, -15 , P450. : Allium sativum, Camellia sinensis, Curcuma longa, Foeniculum vulgare, Ginkgo biloba, Hypericum perforatum, Matricaria recutita (chamomilla), Melissa officinalis, Mentha piperita, Panax ginseng, Polygonum, Silybum marianum, Thymus vulgaris, Trifolium pratense, Vitis vinifera.

18 , :  Allium sativum, Camellia sinensis, Cuminum cyminum, Curcuma longa, Ferula asafetida, Foeniculum vulgare, Ginkgo biloba, Hippophaerhamnoides, Linum usitatissimum, Nerium oleander, Nigella sativa, Olea europaea, Panax ginseng, Thymus vulgaris, Trifolium pratense, Trigonella foenum-graecum, Vitis vinifera, Zingiber officinale.

-7 :  Curcuma longa, Ganoderma lucidum, Linum usitatissimum, Nigella sativa, Panax ginseng, Silybum marianum, Viscum album.

, .

:  , , . , , .
. , .

http://www.ncbi.nlm.nih.gov/pubmed/26599199

( 2015) , , , " ( ). 

http://www.ncbi.nlm.nih.gov/pubmed/25695860

-, , , . 
https://academic.oup.com/carcin/article-abstract/doi/10.1093/carcin/bgx065/3924866/Curcumin-sensitizes-pancreatic-cancer-cells-to?redirectedFrom=fulltext

 

 

 

( 2016) (Ganoderma lucidum) , , , .

5 . .

- / , -50% (p=0.02). , .

. , .

. , . .

. .

http://www.ncbi.nlm.nih.gov/pubmed/27045603

( 2015) . , , . 22 (Paullinia cupana) (Ganoderma lucidum) .

, . 

http://www.ncbi.nlm.nih.gov/pubmed/25811312

( 2015) .

. , -16 . 339 (80.3%), 44 -3 , (Urtica dioica), (Allium sativum), (Nigella sativa) (Curcuma longa) .

-29 .

, -15 , P450. : Allium sativum, Camellia sinensis, Curcuma longa, Foeniculum vulgare, Ginkgo biloba, Hypericum perforatum, Matricaria recutita (chamomilla), Melissa officinalis, Mentha piperita, Panax ginseng, Polygonum, Silybum marianum, Thymus vulgaris, Trifolium pratense, Vitis vinifera.

18 , :  Allium sativum, Camellia sinensis, Cuminum cyminum, Curcuma longa, Ferula asafetida, Foeniculum vulgare, Ginkgo biloba, Hippophaerhamnoides, Linum usitatissimum, Nerium oleander, Nigella sativa, Olea europaea, Panax ginseng, Thymus vulgaris, Trifolium pratense, Trigonella foenum-graecum, Vitis vinifera, Zingiber officinale.

-7 :  Curcuma longa, Ganoderma lucidum, Linum usitatissimum, Nigella sativa, Panax ginseng, Silybum marianum, Viscum album.

, .

:  , , . , , .
. , .

http://www.ncbi.nlm.nih.gov/pubmed/26599199

- (2016) - 3 : (Ganoderma lucidum), (Lentinus edodes) (Grifola frondosa). 
https://www.ncbi.nlm.nih.gov/pubmed/28008808

 ( 2017) - ( ) . 6 : Rhus verniciflua, (Ulmus rubra), (Polygonatum Sibiricum), ' (Lycium chinense), (Ganoderma lucidum) ' (Panax ginseng). 
https://www.ncbi.nlm.nih.gov/pubmed/27626609

 

 

'

'  | '

 

'

( 2015)   , ' (Panax ginseng), , ,   (Camellia sinensis), ' , (Allium sativum), , '' . 

http://www.ncbi.nlm.nih.gov/pubmed/26651248

( 2015) - ( - HCC).

ALT -HCC.

, ALT .

, - HCC.

: Sho-saiko-to, Juzen-taiho-to, SNMC (Scutellaria baicalensis) ' '.

- HCC. 

http://www.ncbi.nlm.nih.gov/pubmed/26457019

( 2015) .

. , -16 . 339 (80.3%), 44 -3 , (Urtica dioica), (Allium sativum), (Nigella sativa) (Curcuma longa) .

-29 .

, -15 , P450. : Allium sativum, Camellia sinensis, Curcuma longa, Foeniculum vulgare, Ginkgo biloba, Hypericum perforatum, Matricaria recutita (chamomilla), Melissa officinalis, Mentha piperita, Panax ginseng, Polygonum, Silybum marianum, Thymus vulgaris, Trifolium pratense, Vitis vinifera.

18 , :  Allium sativum, Camellia sinensis, Cuminum cyminum, Curcuma longa, Ferula asafetida, Foeniculum vulgare, Ginkgo biloba, Hippophaerhamnoides, Linum usitatissimum, Nerium oleander, Nigella sativa, Olea europaea, Panax ginseng, Thymus vulgaris, Trifolium pratense, Trigonella foenum-graecum, Vitis vinifera, Zingiber officinale.

-7 :  Curcuma longa, Ganoderma lucidum, Linum usitatissimum, Nigella sativa, Panax ginseng, Silybum marianum, Viscum album.

, .

:  , , . , , .
. , .

http://www.ncbi.nlm.nih.gov/pubmed/26599199

 ( 2016), , ' (Panax notoginseng) - . 
https://www.ncbi.nlm.nih.gov/pubmed/27222068

(2015) -  '  

http://www.ncbi.nlm.nih.gov/pubmed/26107240

 ( 2017) ' (Panax ginseng) , , .
https://www.ncbi.nlm.nih.gov/pubmed/28068835

 

'

 |  |   | 

 

( 2013) - ' , .
, ' , .
- .
http://www.ncbi.nlm.nih.gov/pubmed/24133965

 


( 2017) 6 , , ' 7 . ' . -Rb1 , -Compound K . ' - . 
https://www.ncbi.nlm.nih.gov/pubmed/27606833

(2015), 14 ( 22-52) ' ( 1800 " -200 " ) (200 " ). . ' -DNA . -DNA -17% (p=0.0156) ' , . (p=0.0021).
https://www.ncbi.nlm.nih.gov/pubmed/26393910

 


- ( 2013) ' . 364 -40 " – 2000 " ' 8 . (p=0.003). ( 30% ) ' (30% 20%). , (p=0.01) (p=0.07). 
https://www.ncbi.nlm.nih.gov/pubmed/23853057

( 2010) ' . 290 (4 ) ' ( 5% Ginsenosides) 750, 1000 2000 " . 175 . (p=0.08) p=0.39)) (1000 - 2000 ") (750 "). ' (40% 17%). 
https://www.ncbi.nlm.nih.gov/pubmed/19415341
( 2017) ' (Methylphenidate) (Cancer related fatigue). 28 3 ( 10) (ESAS- Edmonton symptom assessment scale) / ' 2000 " ( ) ( 10-40 " ) 30.5 . 15 ( , , ). 60% , ( 2.8 p<0.0002).
https://www.ncbi.nlm.nih.gov/pubmed/28299946

 


(Cohort) (2006) 1455 ' (Panax ginseng - Panax quenqefoilum) (Survival) (Quality of life). -27% ' . ' (0.71) (0.70) . , ' , ' , , (p<0.01-0.04). (p=0.01). , -Tamoxifen ( ) ' ' (p=0.02).
https://www.ncbi.nlm.nih.gov/pubmed/16484447

 

 

 

 ( 2017) ( ) . -, , .

6,235 , . -9.4 1,224 . ( 1.5 " ) -21% ( 0.3 " ). ( ).
: , . 
https://www.ncbi.nlm.nih.gov/pubmed/28263368

( 2015)   , ' (Panax ginseng), , ,   (Camellia sinensis), ' , (Allium sativum), , '' . 

http://www.ncbi.nlm.nih.gov/pubmed/26651248

( 2015) . .

.

, , , , EGCG ( ), , , , '' . 

http://www.ncbi.nlm.nih.gov/pubmed/26503998

( 2015) (in vitro) (in vivo) ' ( ).

' : , , , , , , , , . , ' , .

', ( ) ( ). 

http://www.naturopedia.com/article.asp?rId=880

http://www.ncbi.nlm.nih.gov/pubmed/26593532

, -.

, ( ), , , , , 2 , , . , , ( ).

, - .  
:  . : http://www.naturopedia.com/article.asp?rId=880

https://www.ncbi.nlm.nih.gov/pubmed/27723080

, ( 2017), ', , ( ) - , ' .

 https://www.ncbi.nlm.nih.gov/pubmed/28148690

 

 

 

( 2015) - ( - HCC).

ALT -HCC.

, ALT .

, - HCC.

: Sho-saiko-to, Juzen-taiho-to, SNMC (Scutellaria baicalensis) ' '.

- HCC. 

http://www.ncbi.nlm.nih.gov/pubmed/26457019

(2016) -

http://advances.sciencemag.org/content/2/4/e1501780

 

 

 

 ( 2016) , . : (Withania somnifera), (Tribulus terrestris), (Asparagus racemosus), (Azadirachta indica), (Ocimum sanctum) '' (Zingiber officinale). 
https://www.ncbi.nlm.nih.gov/pubmed/27681646

( 2015) , - - . 

http://www.ncbi.nlm.nih.gov/pubmed/26718910

( 2013)   . 100 2 8 . 51 ( 36-70) -50.5 ( 32-71). 77% 2 -3. : Taxotere, Adriamycin -Cyclophosphamide 5-Fluorouracil, Epirubicin -Cyclophosphamide. (p<0.001 -Piper Fatigue Scale , -p<0.003 Schwartz Cancer Fatigue Scale) -7 18 EORTC QLQ-C30 ( p<0.001). .
https://www.ncbi.nlm.nih.gov/pubmed/23142798

( 2015) - (Withania somnifera) . 

http://www.ncbi.nlm.nih.gov/pubmed/26334881

 

 


 | 

 

 

-


( 2016) (®Legasil) (Silybin) (NSCLC-Non Small Cell Lung Cancer). Legasil® 210 " Eurosil 85(60% *) (Silybum marianum). 
62 . - dexamethasone ( ), (Carboplatin) Pemetrexed. 16 , MRI 20% . ®Legasil. . Pemetrexed (5 ). 4 79% . -®Legasil 6 84% .
67 . Pemetrexed. 4 MRI (" 15% ). ®Legasil 3 ( ). . (69% ).
, .
* Eurosil 85 - 80%.
https://www.ncbi.nlm.nih.gov/pubmed/26959886

 

-


( 2016) (Livergol®), (Silybum marianum), * . 27 . 420 " . , (World Health Organization and National Cancer Institute-Common Terminology-Criteria oral mucositis grading scale) ( : p<0.05). , . 
https://www.ncbi.nlm.nih.gov/pubmed/27555604
( 2010) (.Siliphos® Thorne Research, Inc) (Silibinin) 21 (ALL-Acute Limphoblastic Leukemia) . 50 - ALL . - Siliphos®, 80-320 " (5.1 " " ) 28 . Siliphos® (Silybum marianum) 33% 1:2 . ( ALT, AST, ). , 28 (56 ), - AST ( : p=0.05) - ALT ( : p=0.07). , ( ) 61% 72% .
https://www.ncbi.nlm.nih.gov/pubmed/20014183
( 2011) Leviaderm(®) (Silymarin) . 101 (0.25% ) Panthenol ( ). . , (45 29 , p<0.0001). 23.5% 2% . 3 2% 28% .
https://www.ncbi.nlm.nih.gov/pubmed/21786113

 

 

- , ( 2016), .

, .

, , .

-, ( ) . . ( ).

, .

, , .
: . .  .

http://www.ncbi.nlm.nih.gov/pubmed/27155666

 

 

 

( 2014) NSCLC .

69 , (Gemcitabine, Alimta docetaxel) (), - .

21 , , . 12.43 10 . . 

, .    

http://www.ncbi.nlm.nih.gov/pubmed/24941837

( 2015) ( ) .

33 - -.

12 6 . .

( 7.06 3.30). 2-3 .

.

http://www.ncbi.nlm.nih.gov/pubmed/25918996

, ( 2016), Kuan-Sin-Yin .

Kuan-Sin-Yin , : (Codonopsis pilosula), (Atractylodes macrocephala), (Glycyrrhiza uralensis), (Poria cocos), (Astragalus membranaceus), (Ligustrum lucidum) -Agastache rugose.
52 , - , - , . , . 
( ) (heart-rate variability) , .

, . , .
https://www.ncbi.nlm.nih.gov/pubmed/27912948

( 2015) -26,000 , . 

http://www.ncbi.nlm.nih.gov/pubmed/25934515

- ( 2016) NSCLC ( Nonsmall Cell Lung Cancer) , .

- 14 61 4,247 .

11 , 6 : Kang-lai-te injection, Shei-qi-fu-zheng injection,Shen-fu ingection, Zi-jin-long tablet, Compound Ku-shen injection ( ), Kang-ai- injection ( ). Hai-shen-su Tegillarca granosa. - .

http://www.ncbi.nlm.nih.gov/pubmed/26735544

- ( 2016) SH003 . SH003 :

Astragalus membranaceus ,Angelica gigas ,Trichosanthes kirilowii Maximowicz.

.

, , .

http://www.ncbi.nlm.nih.gov/pubmed/27476488

 ( 2016) ( 4)
154 , , -58 . 12 , 18 , 9 (p<0.001).

13 , 204 , , (Glycyrrhiza glabra), (Scutellaria barbata), (Scutellaria baicalensis), (Codonopsis pilosula), (Bupleurum spp), (Salvia miltiorrhiza) (Curcuma longa).

. .  
https://www.ncbi.nlm.nih.gov/pubmed/27583849

( 2015) . (TJ-41, Liu-jun-zi-tang, PHY906, Coumarin, Aescine) , , , , , . (', , , TJ-48, Huachansu, Shenqi fuzheng, Kanglaite) .

, , , , .

, , , , . 

http://www.ncbi.nlm.nih.gov/pubmed/25787906

( 2015) -, ().

http://www.ncbi.nlm.nih.gov/pubmed/26056434

( 2015) SQDBT ( Shi Quan Da Bu Tang) .

12 : Panax ginseng, Atractylodes macrocephala, Wolfiporia extensa, Glycyrrhiza glabra, Rehmannia glutinosa prepatarta (Shu di huang), Paeonia lactiflora, Angelica sinensis, Ligusticum chuanxiong, Cinnamomum cassia, Astragalus membranaceus, Zingiber officinale, Ziziphus jujube.

. , . (placental growth factor) . 

http://www.ncbi.nlm.nih.gov/pubmed/25895458

Shenling Baizhu San (: SBS) . 10 : Panax ginseng, Atractylodes macrocephala, Wolfiporia extensa, Glycyrrhiza glabra, Dioscorea opposite, Dolichos lablab, Nelumbinis Nucifera, Coix lacryma-jobi, Amomum, Platycodon grandifloras.

( 2015), ,

http://www.ncbi.nlm.nih.gov/pubmed/25897964

( 2014) Chang-Wei-Qin - Oxaliplatin.

http://www.ncbi.nlm.nih.gov/pubmed/25103530

( 2015) PHY906-KD018  - Sorafenib

http://www.ncbi.nlm.nih.gov/pubmed/25819872

 ( 2016) Jianpi Ligan (unresectable hepatocellular carcinoma).

103 , (transarterial chemoembolization) 2007-2013. , 50 -53 . : (Codonopsis pilosula), (Atractylodes macrocephala), (Poria cocos), (Glycyrrhiza glabra) (Dioscorea villosa), (Pinelliae Ternatae), (Crataegus spp), (Nelumbinis), (Artemisia scoparia) -Pericarpium Arecae.

, , . , , . (51/53 40/50 ) 3 (38% 26%).
.
https://www.ncbi.nlm.nih.gov/pubmed/27536066

 

 

 

( 2014) .

280 . -3 : , , . 
5 3 , , , , , 2:2:2:1:1:1, 1.1% . 35 3 . 
6 -10 : , (p<0.001) , (p<0.05). , , .

, (-123.2 -112.5) , (-117.4 -123.0, -125.8 -136.0 -110.9 -146.0, ). (-60.8 -67.2) , (-65.5 -61.0 , -60.3 -54.8 -67.3 -47.3 ). 
.

http://www.ncbi.nlm.nih.gov/pubmed/25157942

( 2014) , , , .

24 ( RadiaPlexRx™) 3 , .

4 : (2.5%), (5%), (5%) (5%) (32.5%), (30%), (10%) (10%).

3 (, ) , . , . 
3, 6 -10 .

http://www.ncbi.nlm.nih.gov/pubmed/24668063

 

 

 |  3 |  D |   | 

 

 

- ( 2016) ( ) .

11 26,606 -873,000 7 .

 (345-1750 " ) -8% (203-807 " ). ( 25% 6% ).

300 "/ 2% , 8% -2% , . 
, .

http://www.ncbi.nlm.nih.gov/pubmed/27170091

, , .

, - - .

( 2015) - , , , , EGCG, , , '' .

.

http://www.ncbi.nlm.nih.gov/pubmed/25693744

( 2016) ( ), 22 , .

E .   

http://www.ncbi.nlm.nih.gov/pubmed/27175595

( 2016) . fisetin, EGCG, , , , , , , , -3- .

http://www.ncbi.nlm.nih.gov/pubmed/26864554

(2016) - , .

3 , -EGCG Ziziphus jujube.

, - ( ) ( ).

https://www.ncbi.nlm.nih.gov/pubmed/26156544

,  ( 2017), , . 7 5 .

, . 10 "/" , . , 1 "/" . – .

-, , -. 
.
https://www.ncbi.nlm.nih.gov/pubmed/28282956

( 2015)  

http://www.ncbi.nlm.nih.gov/pubmed/26541610

( 2015) -

http://www.ncbi.nlm.nih.gov/pubmed/25705818

( 2015) -

http://www.ncbi.nlm.nih.gov/pubmed/25976785

( 2015) , , , " ( ). 

http://www.ncbi.nlm.nih.gov/pubmed/25695860

 ( 2017) C . , C , . 
https://www.ncbi.nlm.nih.gov/pubmed/28223550

- ( 2016), , .

685 70 , 45% . : , , , - - . . , 87% (598 ) . 
, 89% (272) 36% (135) . 
, , -, . .
https://www.ncbi.nlm.nih.gov/pubmed/27243607

- ( 2017) E . 11 , " 435,532 – 4,164 .

, E -16% - . -5% 2 "/ E. , .

E , -. E , -, E -. 
https://www.ncbi.nlm.nih.gov/pubmed/28244705

 (2017), (AICR) (WCRF), .

, 2007, 99 ( ) - -29 -250,000 . , ( ), , (-500 '/), , , , , . , , - C, , D -, ( -100 ) ( ) . 
- , , , , , , , 3 , , , , , , , , , , A, B6, E, , , -, , , . 
-47% , . 
http://www.aicr.org/continuous-update-project/colorectal-cancer.html

 ( 2016) - - (, ). 
- , , , C , , (Bowman-Birk inhibitor) . ( ), , C .

- .
https://www.ncbi.nlm.nih.gov/pubmed/26863913

 ( 2017) B3 , DNA, .
https://www.ncbi.nlm.nih.gov/pubmed/28681504

 ( 2017), (VITAL), B .

77,118 50-76, 808 . - 10 . 
B ( , B6 -B12) . , B6 -B12 ( -) 30-40% . , , B6 ( 20 "/) B12 ( 55 "/) . . , . 
https://www.ncbi.nlm.nih.gov/pubmed/28829668

 

 

3

 

 ( 2017) 3 .

61 , - (-'), , -5- . 3 (900 " - ) (250 " - ) 15 (3 -12 ).

. , 3 , 3 () (p=0.018), , , (16.1% 36.7%, p=0.068) ( AST -ALT, p=0.012 -p=0.015, ). 3

https://www.ncbi.nlm.nih.gov/pubmed/27644137

- ( 2017) 3 , .

- -, , - 3 . , 623 , .

3 ( ), , , CRP - IL-6 T CD3 -CD4. , TNF-α 3  T CD8 .

3 5-7 .

: , 3 , . , . 
https://www.ncbi.nlm.nih.gov/pubmed/28410575

( 2016), 3 1,659 .

3 , 0.3 3 -40% , 0.1 3. , 3 0.15 -70% 3. 3 .

3 .  

http://www.ncbi.nlm.nih.gov/pubmed/27436272

(2016) - , .

3 , -EGCG Ziziphus jujube.

, - ( ) ( ).

https://www.ncbi.nlm.nih.gov/pubmed/26156544

 ( 2017), , 3 (CYP4F11) 6 (CYP4A11).

6 3.

3 3 , . , 6 . . 
https://www.ncbi.nlm.nih.gov/pubmed/28557975

 

 

D

 

( 2016) 190 , D

http://www.ncbi.nlm.nih.gov/pubmed/26903577

( 2016) D .

D , 1 2 .

D 1.

2, D , .

D 1 -2, D .

, D

http://www.ncbi.nlm.nih.gov/pubmed/27030935

( 2016) D . D .

1,169 55 D 30 /" . 1,135 55 D 48 /" .

( ) D -4 . D , D -40 /" -67% D -20 /".

D D ( , ). 

http://www.ncbi.nlm.nih.gov/pubmed/27049526

 (2017), (AICR) (WCRF), .

, 2007, 99 ( ) - -29 -250,000 . , ( ), , (-500 '/), , , , , . , , - C, , D -, ( -100 ) ( ) . 
- , , , , , , , 3 , , , , , , , , , , A, B6, E, , , -, , , . 
-47% , . 
http://www.aicr.org/continuous-update-project/colorectal-cancer.html

 

 

 

- ( 2014) – , . 9 -40% . 16 . 8 -34% . .

http://www.ncbi.nlm.nih.gov/pubmed/24224911

( 2016)  

, , . , , , , , , , ( , , , , ) , .

. (NTD).

, -

http://www.ncbi.nlm.nih.gov/pubmed/27008500

 ( 2017) .

- -DNA, -DNA. , . . , , . , , .  400 " , 600 " -500 " .

, , .
https://www.ncbi.nlm.nih.gov/pubmed/28588742

 ( 2017), (VITAL), B .

77,118 50-76, 808 . - 10 . 
B ( , B6 -B12) . , B6 -B12 ( -) 30-40% . , , B6 ( 20 "/) B12 ( 55 "/) . . , . 
https://www.ncbi.nlm.nih.gov/pubmed/28829668

 

 

 

- ( 2016) ,

http://www.ncbi.nlm.nih.gov/pubmed/27357089

 

 

:

  1. Dawit Kidane et al. Interplay between DNA repair and inflammation, and the link to cancer. Crit Rev Biochem Mol Biol. Jan 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300235/
  2. Alberto Mantovani et al. Review Article Cancer-related inflammation. Nature. Jul 24, 2008. http://www.nature.com/nature/journal/v454/n7203/full/nature07205.html 
  3. Aaron J. Schetter, Niels H. H. Heegaard, Curtis C. Harris. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. Jan 2010. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802675/
  4. Shiels MS et al. Circulating inflammation markers and prospective risk for lung cancer. J Natl Cancer Inst. Dec 2013. http://www.ncbi.nlm.nih.gov/pubmed/24249745
  5. Sharon R. Pine et al. Increased levels of circulating interleukin 6, interleukin 8, C-reactive protein, and risk of lung cancer. J Natl Cancer Inst.  Jul 2011. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139587/
  6. Fernandez-Garcia B et al. Prognostic significance of inflammatory factors expression by stroma from breast carcinomas. Carcinogenesis. May 19, 2016. http://www.ncbi.nlm.nih.gov/pubmed/27207649
  7. Eiró N et al. Analysis of the expression of interleukins, interferon β, and nuclear factor-κ B in prostate cancer and their relationship with biochemical recurrence. J Immunother. Sep 2014 . http://www.ncbi.nlm.nih.gov/pubmed/25075566
  8. Koshiol J et al. Association of inflammatory and other immune markers with gallbladder cancer: Results from two independent case-control studies. Cytokine.  Jul 2016. http://www.ncbi.nlm.nih.gov/pubmed/27173614
  9. Ismar Rasic, Svjetlana Radovic, Goran Aksamija. Relationship Between Chronic Inflammation and the Stage and Histopathological Size of Colorectal Carcinoma. Med Arch. Apr 2016 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851510/
  10. Zamora-Ros R et al. Dietary inflammatory index and inflammatory gene interactions in relation to colorectal cancer risk in the Bellvitge colorectal cancer case-control study. Genes Nutr. Jan 2015. http://www.ncbi.nlm.nih.gov/pubmed/25488145
  11. Kiyabu GY et al. Fish, n - 3 polyunsaturated fatty acids and n - 6 polyunsaturated fatty acids intake and breast cancer risk: The Japan Public Health Center-based prospective study. Int J Cancer. Dec 15, 2015. http://www.ncbi.nlm.nih.gov/pubmed/26147326
  12. Lisa C Vinikoor et al. trans-Fatty Acid Consumption and its Association with Distal Colorectal Cancer in the North Carolina Colon Cancer Study II. Cancer Causes Control. Oct 20, 2009. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2809818/
  13. Zamora-Ros R et al. Dietary inflammatory index and inflammatory gene interactions in relation to colorectal cancer risk in the Bellvitge colorectal cancer case-control study. Genes Nutr. Jan 2015 . http://www.ncbi.nlm.nih.gov/pubmed/25488145
  14. Galas A, Kulig P, Kulig J. Dietary inflammatory index as a potential determinant of a length of hospitalization among surgical patients treated for colorectal cancer. Eur J Clin Nutr. Oct 2014. http://www.ncbi.nlm.nih.gov/pubmed/25005677
  15. Nagendra Sastry Yarla et al. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol. Feb 4, 2016. http://www.ncbi.nlm.nih.gov/pubmed/26853158
  16. Turner-McGrievy GM et al. Randomization to plant-based dietary approaches leads to larger short-term improvements in Dietary Inflammatory Index scores and macronutrient intake compared with diets that contain meat. Nutr Res. Feb 2015. http://www.ncbi.nlm.nih.gov/pubmed/25532675
  17. Medina-Remón A et al. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: a substudy of the PREDIMED trial. Br J Clin Pharmacol. Apr 21, 2016. http://onlinelibrary.wiley.com/doi/10.1111/bcp.12986/full
  18. Salas-Salvadó J et al. Components of the Mediterranean-type food pattern and serum inflammatory markers among patients at high risk for cardiovascular disease. Eur J Clin Nutr. May 2008 . http://www.ncbi.nlm.nih.gov/pubmed/17440519?dopt=Abstract
  19. Erica M. Holt et al. Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. J Am Diet Assoc. Mar 2009. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676354/
  20. Akiko Nanri et al. Dietary patterns and C-reactive protein in Japanese men and women1,2,3. Am J Clin Nutr. May 2008 . http://ajcn.nutrition.org/content/87/5/1488.long
  21. Sciacca L et al. Clinical and molecular mechanisms favoring cancer initiation and progression in diabetic patients. Nutr Metab Cardiovasc Dis. Sep 2013. http://www.ncbi.nlm.nih.gov/pubmed/23932729
  22. Peter T. Campbell et al. Diabetes and Cause-Specific Mortality in a Prospective Cohort of One Million U.S. Adults. Diabetes Care. Sep 2012. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425000/
  23. Nour Makarem et al. Cancer Link Offers Another Reason to Avoid Highly Processed Carbs. Experimental Biology . Apr 2016. http://www.newswise.com/articles/cancer-link-offers-another-reason-to-avoid-highly-processed-carbs
  24. Craig J. Currie et al. Mortality After Incident Cancer in People With and Without Type 2 Diabetes. Impact of metformin on survival. Diabetes Care. Feb 2012. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263862/
  25. Trinidad P. Trinidad. Nutritional and health benefits of coconut sap sugar/syrup. FNRI Department of Science and Technology. http://www.pca.da.gov.ph/coconutrde/images/sugarpdfs/TPTrinidad_FNRI.pdf
  26. Harasym J, Oledzki R. Effect of fruit and vegetable antioxidants on total antioxidant capacity of blood plasma. Nutrition. May 2014. http://www.ncbi.nlm.nih.gov/pubmed/24698344
  27. Zhang M et al. Dietary intakes of mushrooms and green tea combine to reduce the risk of breast cancer in Chinese women. Int J Cancer. Oct 1, 2008. http://onlinelibrary.wiley.com/doi/10.1002/ijc.24047/full
  28. Balazs Bodai, MD, Phillip Tuso, MD. Breast Cancer Survivorship: A Comprehensive Review of Long-Term Medical Issues and Lifestyle Recommendations. Perm J. 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403581/
  29. Brouwer CA et al. Long-term cardiac follow-up in survivors of a malignant bone tumour. . Ann Oncol . 2006. http://www.ncbi.nlm.nih.gov/pubmed/16857723
  30. Kojima R, Toyama Y, Ohnishi ST. Protective effects of an aged garlic extract on doxorubicin-induced cardiotoxicity in the mouse. Nutr Cancer. 1994. http://www.ncbi.nlm.nih.gov/pubmed/14502845
  31. Dwivedi C et al. Effects of oil-soluble organosulfur compounds from garlic on doxorubicin-induced lipid peroxidation. Anticancer Drugs . 1998. http://www.ncbi.nlm.nih.gov/pubmed/9625441
  32. Thabrew MI et al. Protection by garlic against Adriamycin-induced alterations in the oxido-reductive status of mouse red blood cells. Phytother Res. May 2000. http://www.ncbi.nlm.nih.gov/pubmed/10815020
  33. Mukherjee S et al. Protection against acute Adriamycin-induced cardiotoxicity by garlic: role of endogenous antioxidants and inhibition of TNF-α expression. BMC Pharmacol . Dec 2003. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC324401/
  34. Lang A et al. Allicin inhibits spontaneous and TNF-α induced secretion of proinflammatory cytokines and chemokines from intestinal epithelial cells. . Clin Nutr. Oct 2004. http://www.ncbi.nlm.nih.gov/pubmed/15380914
  35. Horie T et al. Protective effect of aged garlic extract on the small intestinal damage of rats induced by methotrexate administration. Planta Med . Aug 1999. https://www.thieme-connect.com/DOI/DOI?10.1055/s-1999-14023
  36. Alleviation by garlic of antitumor drug-induced damage to the intestine. J Nutr. Mar 2001. http://jn.nutrition.org/cgi/pmidlookup?view=long&pmid=11238819
  37. Khosla P, Karan RS, Bhargava VK. Effect of garlic oil on ethanol induced gastric ulcers in rats. hytother Res. Jan 2004. http://www.ncbi.nlm.nih.gov/pubmed/14750208
  38. Shu XO et al. Soy food intake and breast cancer survival. JAMA. Dec 9, 2009 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874068/
  39. Magee PJ, Rowland I. Soy products in the management of breast cancer. Curr Opin Clin Nutr Metab Care.  Nov 2012 . http://www.ncbi.nlm.nih.gov/pubmed/23075937
  40. Fritz H et al. Soy, red clover, and isoflavones and breast cancer: a systematic review. PLoS One.  Nov 28, 2013 . http://www.ncbi.nlm.nih.gov/pubmed/24312387
  41. Liu B et al. Low-dose dietary phytoestrogen abrogates tamoxifen-associated mammary tumor prevention. Cancer Res. Feb 1, 2005 . http://cancerres.aacrjournals.org/content/65/3/879.long
  42. van Duursen MB et al. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model. Toxicol Appl Pharmacol. Jun 1, 2013 . http://www.ncbi.nlm.nih.gov/pubmed/23541764
  43. Ju YH et al. Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice. Cancer Res.  May 1, 2002 . http://cancerres.aacrjournals.org/content/62/9/2474.long
  44. González-Vallinas M et al. Modulation of estrogen and epidermal growth factor receptors by rosemary extract in breast cancer cells. Electrophoresis. Jun 2014. http://www.ncbi.nlm.nih.gov/pubmed/24615943?dopt=Abstract
  45. Tai J et al. Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine. Mar 2012. http://www.ncbi.nlm.nih.gov/pubmed/22325591?dopt=Abstract
  46. González-Vallinas M et al. Antitumor effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and resistant colon cancer cells. Pharmacol Res.  Jun 2013. http://www.ncbi.nlm.nih.gov/pubmed/23557932?dopt=Abstract
  47. El-Naggar SA et al. Efficacy of Rosmarinus officinalis leaves extract against cyclophosphamide-induced hepatotoxicity. Pharm Biol.  Feb 1, 2016. http://www.ncbi.nlm.nih.gov/pubmed/26828825
  48. Ramachandran C et al. Potentiation of etoposide and temozolomide cytotoxicity by curcumin and turmeric force™ in brain tumor cell lines. J Complement Integr Med. Aug 2012. http://www.ncbi.nlm.nih.gov/pubmed/22944718
  49. Ping Chen et al. Curcumin reverses cisplatin resistance in cisplatin-resistant lung caner cells by inhibiting FA/BRCA pathway. Tumor Biology. May 2015. http://link.springer.com/article/10.1007/s13277-014-2996-4
  50. Patel BB et al. Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R. Anticancer Res. Feb 2010. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836443/
  51. Chen J et al. Curcumin and its promise as an anticancer drug: An analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections. Eur J Pharmacol.  Feb 5, 2016 . http://www.ncbi.nlm.nih.gov/pubmed/26723514
  52. Rao S et al. The Indian Spice Turmeric Delays and Mitigates Radiation-Induced Oral Mucositis in Patients Undergoing Treatment for Head and Neck Cancer: An Investigational Study. Integr Cancer Ther. Oct 28, 2013 . http://www.ncbi.nlm.nih.gov/pubmed/24165896
  53. Hoa H. Le et al. Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol Lett. Jan 30, 2008. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254523/
  54. Rafat A. Siddiqui. Omega 3-Fatty Acids: Health Benefits and Cellular Mechanisms of Action. Medicinal Chemistry. 2016. http://www.eurekaselect.com/80201/article?trendmd-shared=0
  55. Donatella D'Eliseo, Francesca Velotti. Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy. J clin Med. Feb 2016. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773771/
  56. Ruth E. Patterson. Marine Fatty Acid Intake Is Associated with Breast Cancer Prognosis. J Nutr. Feb 2011. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021439/
  57. Kim J et al. Fatty fish and fish omega-3 fatty acid intakes decrease the breast cancer risk: a case-control study. BMC Cancer. Jun 30, 2009. http://www.ncbi.nlm.nih.gov/pubmed/19566923
  58. Chan JM et al. Diet after diagnosis and the risk of prostate cancer progression, recurrence, and death (United States). Cancer Causes Control. Mar 2006. http://www.ncbi.nlm.nih.gov/pubmed/16425098
  59. Georgia Lenihan-Geels et al. Cancer Risk and Eicosanoid Production: Interaction between the Protective Effect of Long Chain Omega-3 Polyunsaturated Fatty Acid Intake and Genotype. J Clin Med. Feb 2016. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773781/
  60. Lovegrove C et al. Systematic review of prostate cancer risk and association with consumption of fish and fish-oils: analysis of 495,321 participants. Int J Clin Pract. Jan 2015. http://www.ncbi.nlm.nih.gov/pubmed/25495842
  61. Martinchik AN, Zubtsov VV. Phytoestrogenis properties of flaxseed lignans. Vopr Pitan. 2012. http://www.ncbi.nlm.nih.gov/pubmed/23530438
  62. Martinchik AN et al. Nutritional value and functional properties of flaxseed. Vopr Pitan. 2012. http://www.ncbi.nlm.nih.gov/pubmed/22888664
  63. Ulrika W. Nilsson Åberg et al. Tamoxifen and Flaxseed Alter Angiogenesis Regulators in Normal Human Breast Tissue In Vivo. PLoS ONE. Sep 30, 2011. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025720
  64. Richard Béliveau, Denis Gingras. Role of nutrition in preventing cancer. Can Fam Physician. Nov 2007. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2231485/
  65. Norlaily Mohd Ali et al. The Promising Future of Chia, Salvia hispanica L. J Biomed Biotechnol. Nov 21, 2012. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518271/#B49
  66. Martínez-Cruz O, Paredes-López O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J Chromatogr A. Jun 13, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24811150
  67. Valdivia-López MÁ, Tecante A. Chia (Salvia hispanica): A Review of Native Mexican Seed and its Nutritional and Functional Properties. Adv Food Nutr Res. 2015. http://www.ncbi.nlm.nih.gov/pubmed/26319904
  68. V Vuksan et al. Reduction in postprandial glucose excursion and prolongation of satiety: possible explanation of the long-term effects of whole grain Salba (Salvia Hispanica L.). European Journal of Clinical Nutrition . Jan 2010. http://www.nature.com/ejcn/journal/v64/n4/full/ejcn2009159a.html
  69. Marineli Rda S et al. Chia (Salvia hispanica L.) enhances HSP, PGC-1α expressions and improves glucose tolerance in diet-induced obese rats. Nutrition. May 2015 . http://www.ncbi.nlm.nih.gov/pubmed/25837222
  70. Gonzales JF et al. Applying the precautionary principle to nutrition and cancer. J Am Coll Nutr. May 2014. http://www.ncbi.nlm.nih.gov/pubmed/24870117
  71. Federica Turati et al. Fruit and vegetables and cancer risk: a review of southern European studies. British Journal of Nutrition. Apr 2015. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9810951&fileId=S0007114515000148
  72. Park SY et al. Fruit and vegetable intakes are associated with lower risk of bladder cancer among women in the Multiethnic Cohort Study. J Nutr. Aug 2013. http://www.ncbi.nlm.nih.gov/pubmed/23739308
  73. Fang X et al. Landscape of dietary factors associated with risk of gastric cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Cancer. Dec 2015. http://www.ncbi.nlm.nih.gov/pubmed/26589974
  74. Aune D. et al. Fruits, vegetables and the risk of cancer: a multisite case-control study in Uruguay. Asian Pac J Cancer Prev. Jul-Sep 2009. http://www.ncbi.nlm.nih.gov/pubmed/19640185
  75. Bradbury KE et al. Fruit, vegetable, and fiber intake in relation to cancer risk: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr. Jul 2014. http://www.ncbi.nlm.nih.gov/pubmed/24920034
  76. Carrie A. Thompson et al. Antioxidant Intake from Fruits, Vegetables and Other Sources and Risk of Non-Hodgkin Lymphoma: The Iowa Women's Health Study. Int J Cancer. Feb 15, 2010. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798902/
  77. Moyle CW et al. Potent inhibition of VEGFR-2 activation by tight binding of green tea epigallocatechin gallate and apple procyanidins to VEGF: relevance to angiogenesis. Mol Nutr Food Res. Mar 2015 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681316/
  78. Singh SV et al. Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice in association with increased cytotoxicity of natural killer cells. Cancer Res. Mar 1, 2009. http://www.ncbi.nlm.nih.gov/pubmed/19223537
  79. Lenzi M et al. Sulforaphane as a promising molecule for fighting cancer. Cancer Treat Res. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24114482
  80. Tomczyk J, Olejnik A. Sulforaphane--a possible agent in prevention and therapy of cancer. Postepy Hig Med Dosw. Nov 29, 2010. http://www.ncbi.nlm.nih.gov/pubmed/21160094
  81. Abdull Razis AF, Noor NM. Cruciferous vegetables: dietary phytochemicals for cancer prevention. Asian Pac J Cancer Prev. 2013. http://www.ncbi.nlm.nih.gov/pubmed/23679237
  82. Tse G, Eslick GD. Cruciferous vegetables and risk of colorectal neoplasms: a systematic review and meta-analysis. Nutr Cancer. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24341734
  83. W Watson G et al. Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention. AAPS J. Oct 2013. http://www.ncbi.nlm.nih.gov/pubmed/23800833
  84. Lam TK et al. Cruciferous vegetable consumption and lung cancer risk: a systematic review. Cancer Epidemiol Biomarkers Prev.  Jan 2009. http://www.ncbi.nlm.nih.gov./pubmed/19124497
  85. Tang L et al. Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers: a case-control study. BMC Cancer. Apr 27, 2010. http://www.ncbi.nlm.nih.gov/pubmed/20423504
  86. Holly L. Nicastro et al. Garlic and onions: Their cancer prevention properties. Cancer Prev Res (Phila). Jan 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366009/
  87. Xiao D et al. Diallyl trisulfide inhibits angiogenic features of human umbilical vein endothelial cells by causing Akt inactivation and down-regulation of VEGF and VEGF-R2. Nutr Cancer. 2006. http://www.ncbi.nlm.nih.gov/pubmed/16965246
  88. Hantz HL, Young LF, Martin KR. Physiologically attainable concentrations of lycopene induce mitochondrial apoptosis in LNCaP human prostate cancer cells. Exp Biol Med (Maywood). Mar 2005. http://www.ncbi.nlm.nih.gov/pubmed/15734720
  89. Ke Zu, Lorelei Mucci, Bernard A. Rosner et al. Dietary Lycopene, Angiogenesis, and Prostate Cancer: A Prospective Study in the Prostate-Specific Antigen Era. J Natl Cancer Inst. Feb 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3952200/
  90. Ilic D, Forbes KM, Hassed C. Lycopene for the prevention of prostate cancer. Cochrane Database Syst Rev. Nov 9, 2011 . http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD008007.pub2/full
  91. Haseen F et al. Is there a benefit from lycopene supplementation in men with prostate cancer? A systematic review. Prostate Cancer Prostatic Dis. 2009. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0027481/
  92. Friedman, Mendel. Chemistry and Anticarcinogenic Mechanisms of Glycoalkaloids Produced by Eggplants, Potatoes, and Tomatoes. J. Agric. Food Chem. Mar 30, 2015. http://pubs.acs.org/doi/abs/10.1021/acs.jafc.5b00818
  93. Zhang F et al. Anticancer function of α-solanine in lung adenocarcinoma cells by inducing microRNA-138 expression. Tumour Biol. Dec 2, 2015. http://www.ncbi.nlm.nih.gov/pubmed/26631041
  94. Shen KH et al. α-Solanine inhibits invasion of human prostate cancer cell by suppressing epithelial-mesenchymal transition and MMPs expression. Molecules. Aug 11, 2014. http://www.ncbi.nlm.nih.gov/pubmed/25116803
  95. Hongwei Sun et al. Solanine Induces Mitochondria-Mediated Apoptosis in Human Pancreatic Cancer Cells. Biomed Res Int. May 11, 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4037623/
  96. Chongqing Lv et al. Antitumor Efficacy of α-Solanine against Pancreatic Cancer In Vitro and In Vivo. PLoS One. Feb 5, 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914882/
  97. Deendayal Patel, Sanjeev Shukla, Sanjay Gupta. Apigenin and cancer chemoprevention: Progress, potential and promise (Review). International Journal of Oncology. Jan 1, 2007. http://www.spandidos-publications.com/ijo/30/1/233
  98. Esther Lai-Har Tang et al. Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells. Journal of the Science of Food and Agriculture. Feb 19, 2015. http://onlinelibrary.wiley.com/doi/10.1002/jsfa.7078/full
  99. Lefort ÉC, Blay J. Apigenin and its impact on gastrointestinal cancers. Mol Nutr Food Res. Jan 2013. http://www.ncbi.nlm.nih.gov/pubmed/23197449
  100. Zhu Y, Wu J, Li S et al. Apigenin inhibits migration and invasion via modulation of epithelial mesenchymal transition in prostate cancer. Mol Med Rep. Feb 2015. http://www.ncbi.nlm.nih.gov/pubmed/25351792
  101. Tang AQ, Cao XC, Tian L et al. Apigenin inhibits the self-renewal capacity of human ovarian cancer SKOV3‑derived sphere-forming cells. Mol Med Rep. Mar 2015. http://www.ncbi.nlm.nih.gov/pubmed/25405327
  102. Seo HS, Ku JM, Choi HS et al. Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2-overexpressing MDA-MB-453 breast cancer cells. Anticancer Res. Jun 2014. http://www.ncbi.nlm.nih.gov/pubmed/24922650
  103. Wu DG, Yu P, Li JW et al. Apigenin potentiates the growth inhibitory effects by IKK-β-mediated NF-κB activation in pancreatic cancer cells. Toxicol Lett. Jan 3, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24148603
  104. Owen RW et al. Olives and olive oil in cancer prevention. Eur J Cancer Prev. Aug 2004. http://www.ncbi.nlm.nih.gov/pubmed/15554560
  105. Cárdeno A et al. An up-date of olive oil phenols in inflammation and cancer: molecular mechanisms and clinical implications. Curr Med Chem. 2013. http://www.ncbi.nlm.nih.gov/pubmed/23834184
  106. Calabriso N et al. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression. J Nutr Biochem. Feb 2016 . http://www.ncbi.nlm.nih.gov/pubmed/26878779
  107. Lamy S et al. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation. Exp Cell Res. Mar 10, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24326154
  108. Scoditti E et al. Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch Biochem Biophys. Nov 15, 2012 . http://www.ncbi.nlm.nih.gov/pubmed/22595400
  109. Psaltopoulou T et al. Olive oil intake is inversely related to cancer prevalence: a systematic review and a meta-analysis of 13,800 patients and 23,340 controls in 19 observational studies. Lipids Health Dis. Jul 2011. http://www.ncbi.nlm.nih.gov/pubmed/21801436
  110. Stoneham M et al. Olive oil, diet and colorectal cancer: an ecological study and a hypothesis. JEpidemiol Community Health. Oct. 2000. http://www.ncbi.nlm.nih.gov/pubmed/10990479
  111. Buckland G, Gonzalez CA. The role of olive oil in disease prevention: a focus on the recent epidemiological evidence from cohort studies and dietary intervention trials. Br J Nutr. Apr. 2015. http://www.ncbi.nlm.nih.gov/pubmed/26148926
  112. Khuda-Bukhsh et al. Molecular Approaches Toward Targeted Cancer Prevention with Some Food Plants and Their Products: Inflammatory and Other Signal Pathways. NUNR CANCER. Feb 2014. http://www.ncbi.nlm.nih.gov/pubmed/24377653
  113. Sakina M. Petiwala and Jeremy J. Johnson. Diterpenes from rosemary ( Rosmarinus officinalis ): Defining their potential for anti-cancer activity. Elsevier . 2015. https://www-clinicalkey-com/#!/content/playContent/1-s2.0-S0304383515004462?returnurl=null&referrer=null
  114. Al-Menhali A et al. Thymus vulgaris (thyme) inhibits proliferation, adhesion, migration, and invasion of human colorectal cancer cells. J Med Food. Jan 2015. http://www.ncbi.nlm.nih.gov/pubmed/25379783
  115. Arami S, Ahmadi A, Haeri SA. The radioprotective effects of Origanum vulgare extract against genotoxicity induced by (131)I in human blood lymphocyte. Cancer Biother Radiopharm. Apr 2013. http://www.ncbi.nlm.nih.gov/pubmed/23413802
  116. Weidner C et al. Melissa officinalis extract induces apoptosis and inhibits proliferation in colon cancer cells through formation of reactive oxygen species. Phytomedicine. Feb 15, 2015 . http://www.ncbi.nlm.nih.gov/pubmed/25765831
  117. Jahanban-Esfahlan A et al. Anti Proliferative Properties of Melissa officinalis in Different Human Cancer Cells. Asian Pac J Cancer Prev. 2015. http://www.apocpcontrol.org/paper_file/issue_abs/Volume16_No14/5703-5707%202.5%20Akram%20Jahanban-Esfahlan-Revised.pdf
  118. Queiroz RM et al. Apoptosis-inducing effects of Melissa officinalis L. essential oil in glioblastoma multiforme cells. Cancer Invest. Jul 2014 . http://www.ncbi.nlm.nih.gov/pubmed/24745610
  119. Maryam Keshavarz et al. In vitro and ex vivo antiangiogenic activity of Salvia officinalis. Phytotherapy Research. JUN 1, 2010. http://onlinelibrary.wiley.com/doi/10.1002/ptr.3168/abstract
  120. Han Y et al. Separation, characterization and anticancer activities of a sulfated polysaccharide from Undaria pinnatifida. Int J Biol Macromol. Feb 2016. http://www.ncbi.nlm.nih.gov/pubmed/26616455
  121. Kim KJ, Yoon KY, Lee BY. Low molecular weight fucoidan from the sporophyll of Undaria pinnatifida suppresses inflammation by promoting the inhibition of mitogen-activated protein kinases and oxidative stress in RAW264.7 cells. Fitoterapia. Dec 2012 . http://www.ncbi.nlm.nih.gov/pubmed/23006539
  122. Hongming Teng et al. Fucoidan Suppresses Hypoxia-Induced Lymphangiogenesis and Lymphatic Metastasis in Mouse Hepatocarcinoma. Mar Drugs. Jun 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4483642/
  123. Peisheng Wang et al. Anti-Metastasis Effect of Fucoidan from Undaria pinnatifida Sporophylls in Mouse Hepatocarcinoma Hca-F Cells. PLoS One.  Aug 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146566/
  124. Hye-Jin Boo et al. The Anticancer Effect of Fucoidan in PC-3 Prostate Cancer Cells. Mar Drugs. Aug 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766877/
  125. Ghislain Moussavou et al. Anticancer Effects of Different Seaweeds on Human Colon and Breast Cancers. Mar. Drugs. Sep 2014. http://www.mdpi.com/1660-3397/12/9/4898/htm
  126. Boo HJ et al. Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells. Phytother Res. Jul 2011 . http://www.ncbi.nlm.nih.gov/pubmed/21452391
  127. Sheng Kelvin Wang et al. Extracts from New Zealand Undaria pinnatifida Containing Fucoxanthin as Potential Functional Biomaterials against Cancer in Vitro. J Funct Biomater. Jun 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4099972/
  128. Yu RX et al. Effects of fucoxanthin on proliferation and apoptosis in human gastric adenocarcinoma MGC-803 cells via JAK/STAT signal pathway. Eur J Pharmacol. Apr 2011. http://www.ncbi.nlm.nih.gov/pubmed/21187083
  129. Kim KN et al. Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. Toxicol In Vitro. Sep 2010. http://www.ncbi.nlm.nih.gov/pubmed/20594983
  130. Guan H et al. Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metab. May 2009. http://www.ncbi.nlm.nih.gov/pubmed/19190105
  131. Braganza MZ et al. Adolescent and mid-life diet and subsequent risk of thyroid cancer in the NIH-AARP diet and health study. Int J Cancer.  Nov 15, 2015. http://www.ncbi.nlm.nih.gov/pubmed/25974060
  132. Michikawa T et al. Seaweed consumption and the risk of thyroid cancer in women: the Japan Public Health Center-based Prospective Study. Eur J Cancer Prev. May 2012. http://www.ncbi.nlm.nih.gov/pubmed/22414981
  133. Wang C et al. Prospective study of seaweed consumption and thyroid cancer incidence in women: the Japan collaborative cohort study. Eur J Cancer Prev. May 2016. http://www.ncbi.nlm.nih.gov/pubmed/26011104
  134. Tai Sheng Yeh, Nu Hui Hung, Tzu Chun Lin. Analysis of iodine content in seaweed by GC-ECD and estimation of iodine intake. journal of food and drug analysis. Jun 2014. http://www.sciencedirect.com/science/article/pii/S1021949814000155
  135. Koníčková R et al. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Ann Hepatol. Mar-Apr 2014 . http://www.annalsofhepatology.com/revista/numeros/2014/15_142_v13n2_2014_AnticancerEffects.pdf
  136. Pham TX, Lee JY. Anti-Inflammatory Effect of Spirulina platensis in Macrophages Is Beneficial for Adipocyte Differentiation and Maturation by Inhibiting Nuclear Factor-κB Pathway in 3T3-L1 Adipocytes. J Med Food. Jun 2016 . http://www.ncbi.nlm.nih.gov/pubmed/27206252
  137. Maja Kozarski et al. Antioxidants of Edible Mushrooms. Molecules . Oct 2015. http://www.mdpi.com/1420-3049/20/10/19489/htm 
  138. Xu T, Beelman RB, Lambert JD. The cancer preventive effects of edible mushrooms. Anticancer Agents Med Chem. Dec 2012. http://www.ncbi.nlm.nih.gov/pubmed/22583406 
  139. Martin KR, Brophy SK. Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells. Exp Biol Med (Maywood). Nov 2010. http://www.ncbi.nlm.nih.gov/pubmed/20921274 
  140. Lee JS et al. Grifola frondosa (Maitake mushroom) water extract inhibits vascular endothelial growth factor-induced angiogenesis through inhibition of reactive oxygen species and extracellular signal-regulated kinase phosphorylation. J Med Food. Dec 2008 . http://www.ncbi.nlm.nih.gov/pubmed/19053855 
  141. Fritz H et al. Polysaccharide K and Coriolus versicolor extracts for lung cancer: a systematic review. Integr Cancer Ther. May 2015. http://www.ncbi.nlm.nih.gov/pubmed/25784670 
  142. Piotrowski J et al. Immunomodulatory and antitumor properties of polysaccharide peptide (PSP). Postepy Hig Med Dosw (Online). Jan 2015. http://www.ncbi.nlm.nih.gov/pubmed/25614677 
  143. Shinil K. Shah et al. An Evidence-Based Review of a Lentinula edodes Mushroom Extract as Complementary Therapy in the Surgical Oncology Patient. JPEN J Parenter Enteral Nutr. Jul 2011. http://pen.sagepub.com/content/35/4/449.long 
  144. Kenji Ina et al. The Use of Lentinan for Treating Gastric Cancer. Anticancer Agents Med Chem. Jun 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664515/ 
  145. Kim Y, Seo JH, Kim H. β-carotene and lutein inhibit hydrogen peroxide-induced activation of NF-κB and IL-8 expression in gastric epithelial AGS cells. J. Nutr. Sci. Vitaminol. 2011. http://www.ncbi.nlm.nih.gov/pubmed/21908944 
  146. Natália F. Haddad et al. Lycopene and Beta-Carotene Induce Growth Inhibition and Proapoptotic Effects on ACTH-Secreting Pituitary Adenoma Cells. PLoS One. May 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647049/ 
  147. Yoona Park et al. β-Carotene-induced apoptosis is mediated with loss of Ku proteins in gastric cancer AGS cells. Genes Nutr. Jul 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434228/ 
  148. Jeurnink SM et al. Plasma carotenoids, vitamin C, retinol and tocopherols levels and pancreatic cancer risk within the European Prospective Investigation into Cancer and Nutrition: a nested case-control study: plasma micronutrients and pancreatic cancer risk. Mar 15, 2015. http://www.ncbi.nlm.nih.gov/pubmed/25175624 
  149. A. Heather Eliassen et al. Circulating Carotenoids and Risk of Breast Cancer: Pooled Analysis of Eight Prospective Studies. J Natl Cancer Inst. Dec 19, 2012. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525817/ 
  150. Nicholas J. Ollberding et al. Prediagnostic circulating carotenoid levels and the risk of non-Hodgkin lymphoma: the Multiethnic Cohort. Blood. May 1, 2012. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382940/
  151. Hakim IA, Harris RB, Ritenbaugh C. Citrus peel use is associated with reduced risk of squamous cell carcinoma of the skin. Nutr Cancer. 2000. http://www.ncbi.nlm.nih.gov/pubmed/11142088
  152. Jessica A. Miller et al. Human breast tissue disposition and bioactivity of limonene in women with early stage breast cancer. Cancer Prev Res (Phila).  Jun 2013.
  153. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692564/
  154. Jung-Kook Song, Jong-Myon Bae. Citrus Fruit Intake and Breast Cancer Risk: A Quantitative Systematic Review. J Breast Cancer. Mar 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625773/
  155. Im SJ, Kim JH, Kim MY. Evaluation of bioactive components and antioxidant and anticancer properties of citrus wastes generated during bioethanol production. Nat Prod Commun. Apr 2014.http://www.ncbi.nlm.nih.gov/pubmed/24868862
  156. Liwen Wang et al. Anticancer Activities of Citrus Peel Polymethoxyflavones Related to Angiogenesis and Others. Biomed Res Int. Aug 28, 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163462/
  157. Hao M et al. Comparative studies on the anti-tumor activities of high temperature- and pH-modified citrus pectins. Food Funct. Jun 2013. http://www.ncbi.nlm.nih.gov/pubmed/23673419
  158. Anqiang Wang et al. Citrus Fruit Intake Substantially Reduces the Risk of Esophageal Cancer: A Meta-Analysis of Epidemiologic Studies. Medicine (Baltimore). Sep 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4616874/
  159. Bae JM, Lee EJ, Guyatt G. Citrus fruit intake and pancreatic cancer risk: a quantitative systematic review. Pancreas. Mar 2009. http://www.ncbi.nlm.nih.gov/pubmed/18824947
  160. Song JK1, Bae JM. Citrus fruit intake and breast cancer risk: a quantitative systematic review. J Breast Cancer.  Mar 2013. http://www.ncbi.nlm.nih.gov/pubmed/23593085
  161. Bae JM, Lee EJ, Guyatt G. Citrus fruit intake and stomach cancer risk: a quantitative systematic review. Gastric Cancer. 2008. http://www.ncbi.nlm.nih.gov/pubmed/18373174
  162. Wu S et al. Citrus consumption and risk of basal cell carcinoma and squamous cell carcinoma of the skin. Carcinogenesis. Oct 2015. http://www.ncbi.nlm.nih.gov/pubmed/26224304
  163. Joydeb Kumar Kundu, Kyung-Soo Chun. The Promise of Dried Fruits in Cancer Chemoprevention. Asian Pac J Cancer Prev. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24870720
  164. Vizzotto M et al. Polyphenols of selected peach and plum genotypes reduce cell viability and inhibit proliferation of breast cancer cells while not affecting normal cells. Food Chem. Dec 1, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24996346
  165. Noratto G et al. Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. J Agric Food Chem. Jun 24, 2009. http://www.ncbi.nlm.nih.gov/pubmed/19530711
  166. Polyphenolics from peach (Prunus persica var. Rich Lady) inhibit tumor growth and metastasis of MDA-MB-435 breast cancer cells in vivo. J Nutr Biochem. Jul 2014. http://www.ncbi.nlm.nih.gov/pubmed/24745759
  167. Lu QY et al. Inhibition of prostate cancer cell growth by an avocado extract: role of lipid-soluble bioactive substances. J Nutr Biochem. Jan 2015. http://www.ncbi.nlm.nih.gov/pubmed/15629237
  168. Labrecque L et al. Combined inhibition of PDGF and VEGF receptors by ellagic acid, a dietary-derived phenolic compound. Carcinogenesis. Apr 2005. http://www.ncbi.nlm.nih.gov/pubmed/15661805
  169. Gary D. Stoner et al. . Cancer Prevention with Freeze-dried Berries and Berry Components. Semin Cancer Biol. Oct 1, 2008. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2196225/
  170. Knobloch TJ et al. Suppression of Proinflammatory and Prosurvival Biomarkers in Oral Cancer Patients Consuming a Black Raspberry Phytochemical-Rich Troche. Cancer Prev Res (Phila). Feb 2016. http://www.ncbi.nlm.nih.gov/pubmed/26701664
  171. Hanausek M et al. Detoxifying cancer causing agents to prevent cancer. Integr Cancer Ther. Jun 2003. http://www.ncbi.nlm.nih.gov/pubmed/15035900
  172. Adhami VM et al. Cancer chemoprevention by pomegranate: laboratory and clinical evidence. Nutr Cancer. 2009. http://www.ncbi.nlm.nih.gov/pubmed/20155621
  173. Pantuck AJ et al. Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer. Clin Cancer Res. Jul 1, 2006. http://www.ncbi.nlm.nih.gov/pubmed/16818701
  174. Jaganathan SK et al. . Role of pomegranate and citrus fruit juices in colon cancer prevention. World J Gastroenterol. Apr 28, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24782614
  175. Pantuck AJ et al. A randomized, double-blind, placebo-controlled study of the effects of pomegranate extract on rising PSA levels in men following primary therapy for prostate cancer. Prostate Cancer Prostatic Dis. Sep2015.  http://www.nature.com/pcan/journal/v18/n3/full/pcan201532a.html
  176. Manna SK, Mukhopadhyay A, Aggarwal BB. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol. Jun 2000. http://www.ncbi.nlm.nih.gov/pubmed/10843709
  177. Azar Hosseini, Ahmad Ghorbani. Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J Phytomed. Mar-Apr 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4418057/
  178. O’Byrne DJ et al. Comparison of the antioxidant effects of Concord grape juice flavonoids α-tocopherol on markers of oxidative stress in healthy adults. Am J Clin Nutr. Dec 2002 . http://ajcn.nutrition.org/content/76/6/1367.long
  179. Lee SH et al. Anti-angiogenic effects of resveratrol in combination with 5-fluorouracil on B16 murine melanoma cells. Mol Med Rep. Aug 2015 . https://www.spandidos-publications.com/mmr/12/2/2777
  180. Nitta J et al. Weight Gain and Alcohol Drinking Associations with Breast Cancer Risk in Japanese Postmenopausal Women - Results from the Japan Collaborative Cohort (JACC) Study. Asian Pac J Cancer Prev. 2016. http://www.ncbi.nlm.nih.gov/pubmed/27039786
  181. Sohee Park et al. Attributable fraction of alcohol consumption on cancer using population-based nationwide cancer incidence and mortality data in the Republic of Korea. BMC Cancer. Jun 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4065076/
  182. Wu S et al. Alcohol consumption and risk of cutaneous basal cell carcinoma in women and men: 3 prospective cohort studies. Am J Clin Nutr. Nov 2015. http://www.ncbi.nlm.nih.gov/pubmed/26423390
  183. Fang X et al. Landscape of dietary factors associated with risk of gastric cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Cancer. Dec 2015. http://www.ncbi.nlm.nih.gov/pubmed/26589974
  184. Wu L et al. Nut consumption and risk of cancer and type 2 diabetes: a systematic review and meta-analysis. Nutr Rev. Jul 2015. http://www.ncbi.nlm.nih.gov/pubmed/26081452
  185. Narinder Kaur, Vishal Chugh, Anil K. Gupta. Essential fatty acids as functional components of foods- a review. J Food Sci Technol. Oct 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190204/#CR101
  186. Falasca M, Casari I, Maffucci T. Cancer Chemoprevention With Nuts. JNCI J Natl Cancer Inst. Apr 2014. http://jnci.oxfordjournals.org/content/106/9/dju238.long
  187. Jenab M et al. Association of nut and seed intake with colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev.  2004. http://cebp.aacrjournals.org/content/13/10/1595.abstract?ijkey=9ef492b53015c6352daaf056256181dbc40aff2e&keytype2=tf_ipsecsha
  188. Bao Y et al. Nut consumption and risk of pancreatic cancer in women. Br J Cancer. 2013. http://www.nature.com/bjc/journal/v109/n11/full/bjc2013665a.html
  189. Elkady AI, Hussein RA, El-Assouli SM. Mechanism of Action of Nigella sativa on Human Colon Cancer Cells: the Suppression of AP-1 and NF-κB Transcription Factors and the Induction of Cytoprotective Genes. Asian Pac J Cancer Prev. 2015. http://www.ncbi.nlm.nih.gov/pubmed/26625825
  190. Hagag AA et al. Therapeutic value of black seed oil in methotrexate hepatotoxicity in Egyptian children with acute lymphoblastic leukemia. Infect Disord Drug Targets. 2015. http://www.ncbi.nlm.nih.gov/pubmed/25809628
  191. Lidia López-Barrios et al. Bioactive Peptides and Hydrolysates from Pulses and Their Potential Use as Functional Ingredients. Journal of food science . Feb 18, 2014. http://onlinelibrary.wiley.com/doi/10.1111/1750-3841.12365/abstract
  192. Yau Sang Chan et al. A Glucosamine-Specific Lectin from Green Dragon No. 8 Beans (Phaseolus vulgaris) Induced Apoptosis on Nasopharyngeal Carcinoma Cells. Evid Based Complement Alternat Med. Jul 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531188/
  193. Dongyan Tang et al. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem Cent J. Jan 17, 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899625/
  194. Karina Huber et al. Effect of Thermal Processing and Maceration on the Antioxidant Activity of White Beans. PLoS One. Jul 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081045/
  195. Jain MG et al. Plant foods, antioxidants, and prostate cancer risk: findings from case-control studies in Canada. Nutr Cancer. 1999. http://web.a.ebscohost.com/ehost/detail/detail?sid=B7508fc0-14ca-4159-9e77-39d6ead0801c%40sessionmgr4002&vid=0&hid=4107&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d&preview=false#db=mnh&AN=10578485
  196. Young RP, Hopkins RJ. A review of the Hispanic paradox: time to spill the beans? Eur Respir Rev. Dec 2014. http://err.ersjournals.com/content/23/134/439.long
  197. Mueller SO et al. Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERalpha) and ERbeta in human cells. Toxicol Sci. Jul 2004. http://www.ncbi.nlm.nih.gov/pubmed/15084758
  198. Anne M. Weaver et al. Abstract A79: Usual intakes of total and specific isoflavones in association with breast tumor characteristics. Cancer Prevention Research. Nov 2010. http://cancerpreventionresearch.aacrjournals.org/content/3/12_Supplement/A79.abstract
  199. Shu XO et al. Soy food intake and breast cancer survival. JAMA. Dec 9, 2009. http://www.ncbi.nlm.nih.gov/pubmed/19996398
  200. Chang HC et al. Soypeptide lunasin in cytokine immunotherapy for lymphoma. Cancer Immunol Immunother. Mar 2014. http://www.ncbi.nlm.nih.gov/pubmed/24363024
  201. Hernández-Ledesma B et al. Lunasin, a novel seed peptide for cancer prevention. Peptides. Feb 30, 2009. http://www.ncbi.nlm.nih.gov/pubmed/19056440
  202. McConnell EJ et al. The soybean-derived peptide lunasin inhibits non-small cell lung cancer cell proliferation by suppressing phosphorylation of the retinoblastoma protein. Oncotarget. Mar 10, 2015. http://www.ncbi.nlm.nih.gov/pubmed/25609198
  203. Gillian Jones, Ajay Srivastava. Understanding Lunasin’s biology and potential as a cancer therapeutic by utilizing Drosophila genetics. Sage journals. May 2014. http://ebm.sagepub.com/content/239/5/519.long
  204. Mandeep K. Virk-Baker. Role of phytoestrogens in cancer therapy. Planta Med. Author manuscript. Aug 2010. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800092/
  205. SH Mohd Habib et al. Ginger Extract (Zingiber officinale) has Anti-Cancer and Anti-Inflammatory Effects on Ethionine-Induced Hepatoma Rats. Clinics.  Dec 2008 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664283/
  206. Hwang JS et al. Shogaol overcomes TRAIL resistance in colon cancer cells via inhibiting of survivin. Tumour Biol. Nov. 2015. http://www.ncbi.nlm.nih.gov/pubmed/26063410
  207. Choudhury D et al. Aqueous extract of ginger shows antiproliferative activity through disruption of microtubule network of cancer cells. Food Chem Toxicol. Oct 2010. http://www.ncbi.nlm.nih.gov/pubmed/20647029
  208. Ray A, Vasudevan S., Sengupta S. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death. PLOS. Sep. 2015. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137614
  209. Giacosa A et al. Can nausea and vomiting be treated with ginger extract? Eur Rev Med Pharmacol Sci. Apr 2015 . http://www.ncbi.nlm.nih.gov/pubmed/25912592
  210. Dabaghzadeh F, Khalili H, Dashti-Khavidaki S. Ginger for prevention or treatment of drug-induced nausea and vomiting. Curr Clin Pharmacol. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24218997
  211. Lee J, Oh H. Ginger as an antiemetic modality for chemotherapy-induced nausea and vomiting: a systematic review and meta-analysis. Oncol Nurs Forum. Mar 2013 . http://www.ncbi.nlm.nih.gov/pubmed/23448741
  212. Shahnjayla K. Connors, Ganna Chornokur, Nagi B. Kumar. New Insights Into the Mechanisms of Green Tea Catechins in the Chemoprevention of Prostate Cancer. Nutr Cancer. 2012. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665011/
  213. Sharma V, Rao LJ. A thought on the biological activities of black tea. Crit Rev Food Sci Nutr.  May 2009. http://www.ncbi.nlm.nih.gov/pubmed/19399668
  214. Shelly Coe, Ann Fraser, Lisa Ryan. Polyphenol Bioaccessibility and Sugar Reducing Capacity of Black, Green, and White Teas. Int J Food Sci. Apr 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745553/
  215. Joshua D. Lambert, Ryan J. Elias. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. Sep 1, 2010. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946098/
  216. Cheng-Chih Huang et al. Tea Consumption and Risk of Head and Neck Cancer. PLoS One.  May 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010481/
  217. JM., Yuan. Cancer prevention by green tea: evidence from epidemiologic studies. Am J Clin Nutr. Dec 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831544/
  218. Takeshi Makiuchi et al. Association between green tea/coffee consumption and biliary tract cancer: A population‐based cohort study in Japan. Cancer Sci. Jan 2016 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724819/
  219. I-Chun Hou et al. Green tea and the risk of gastric cancer: Epidemiological evidence. World J Gastroenterol.  Jun 28, 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699047/
  220. Jian-Min Yuan, Canlan Sun, Lesley M. Butler. Chapter 8. Tea and Cancer Prevention: Epidemiological Studies. Pharmacol Res. Aug 1, 2011. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123397/
  221. Wang P, Henning SM, Heber D, Vadgama JV. . Sensitization to docetaxel in prostate cancer cells by green tea and quercetin. . J Nutr Biochem. Jan 2015 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375039/
  222. SC Gupta, S Patchva, BB Aggarwal. Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials. AAPS J. Jan 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535097/
  223. Sahebkar A et al. Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacol Res. May 2016 . http://www.ncbi.nlm.nih.gov/pubmed/27025786
  224. Maheshwari RK et al. Multiple biological activities of curcumin: a short review. Life Sci.  Mar 27, 2006 . http://www.ncbi.nlm.nih.gov/pubmed/16413584/
  225. Mosieniak G et al. Curcumin-treated cancer cells show mitotic disturbances leading to growth arrest and induction of senescence phenotype. Int J Biochem Cell Biol.  May 2016. http://www.ncbi.nlm.nih.gov/pubmed/26916504
  226. Curcumin induces permanent growth arrest of human colon cancer cells: link between senescence and autophagy. Mech Ageing Dev. Jun 2012. http://www.ncbi.nlm.nih.gov/pubmed/22613224
  227. Oyagbemi AA, Saba AB, Ibraheem AO. Curcumin: From Food Spice to Cancer Prevention. Asian Pacific J Cancer Prev. 2009. http://www.apocpcontrol.org/paper_file/issue_abs/Volume10_No6/963_b_Ademola.pdf
  228. Devassy JG, Nwachukwu ID, Jones PJ. Curcumin and cancer: barriers to obtaining a health claim. Nutr Rev. Mar 2015 . http://nutritionreviews.oxfordjournals.org/content/73/3/155.long
  229. Perrone D et al. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med.  Nov 2015 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665301/
  230. Fan H et al. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells. Oncol Rep. May 2016. http://www.ncbi.nlm.nih.gov/pubmed/26985864
  231. J. L. Arbiser et al. Curcumin is an in vivo inhibitor of angiogenesis. Mol Med.  Jun 1998 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2230271/
  232. Gururaj AE et al. Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun. Oct 4, 2002. http://www.ncbi.nlm.nih.gov/pubmed/12359244/
  233. Reyes-Gordillo K et al. Curcumin protects against acute liver damage in the rat by inhibiting NF-kappaB, proinflammatory cytokines production and oxidative stress. Biochim Biophys Acta.  Jun 2007 . http://www.ncbi.nlm.nih.gov/pubmed/17383825
  234. Tyagi AK et al. Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: comparison with curcumin. Invest New Drugs. Dec 2015. http://www.ncbi.nlm.nih.gov/pubmed/26521943
  235. Park SY et al. Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. Int Immunopharmacol.  Sep 2012 . http://www.ncbi.nlm.nih.gov/pubmed/22728094
  236. Aromatic-turmerone attenuates invasion and expression of MMP-9 and COX-2 through inhibition of NF-κB activation in TPA-induced breast cancer cells. J Cell Biochem.  Dec 2012 . http://www.ncbi.nlm.nih.gov/pubmed/22740037
  237. Gupta NK, Dixit VK. ioavailability enhancement of curcumin by complexation with phosphatidyl choline. . J Pharm Sci.  May 2011 . http://www.ncbi.nlm.nih.gov/pubmed/21374628
  238. PM., Kidd. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. . Altern Med Rev. Sep 2009 . http://www.altmedrev.com/publications/14/3/226.pdf
  239. Marczylo TH et al. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol. Jul 2007. http://www.ncbi.nlm.nih.gov/pubmed/17051370
  240. Guido Shoba et al. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. May 1998 . https://www.thieme-connect.com/DOI/DOI?10.1055/s-2006-957450
  241. Sahdeo P et al. Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: the Golden Pigment from Golden Spice. Cancer Res Treat . Jan 2014 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918523/
  242. Kenny TP et al. Cocoa procyanidins inhibit proliferation and angiogenic signals in human dermal microvascular endothelial cells following stimulation by low-level H2O2. Exp Biol Med (Maywood). Sep 2004 . http://www.ncbi.nlm.nih.gov/pubmed/15337830
  243. di Giuseppe R et al. Regular consumption of dark chocolate is associated with low serum concentrations of C-reactive protein in a healthy Italian population. J Nutr. Oct 2008. http://www.ncbi.nlm.nih.gov/pubmed/18806104
  244. G, Maskarinec. Cancer protective properties of cocoa: a review of the epidemiologic evidence. Nutr Cancer. 2009. http://www.ncbi.nlm.nih.gov/pubmed/19838930
  245. JH, Weisburger. Chemopreventive effects of cocoa polyphenols on chronic diseases. Exp Biol Med (Maywood). Nov 2001. http://www.ncbi.nlm.nih.gov/pubmed/11682694
  246. Giacosa A et al. Cancer prevention in Europe: the Mediterranean diet as a protective choice. Eur J Cancer Prev. Jan 2013. http://www.ncbi.nlm.nih.gov/pubmed/22644232
  247. V Benetou et al. Conformity to traditional Mediterranean diet and cancer incidence: the Greek EPIC cohort. Br J Cancer. Jul 8, 2008. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2453039/
  248. E Couto et al. Mediterranean dietary pattern and cancer risk in the EPIC cohort. Br J Cancer. Apr 26, 2011. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3101925/
  249. Katherine Esposito et al. A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ Open. Aug 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538272/
  250. Li-Qiang Qin et al. Milk consumption is a risk factor for prostate cancer in. Asia Pac J Clin Nutr . 2007. http://web.b.ebscohost.com/ehost/detail/detail?sid=6c4f2d35-2323-4a6b-9c4a-e602bc1959a3%40sessionmgr103&vid=0&hid=109&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d&preview=false#db=mnh&AN=17704029
  251. Malekinejad H, Rezabakhsh A. Hormones in Dairy Foods and Their Impact on Public Health - A Narrative Review Article. Iran J Public Health. Jun 2015 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524299/
  252. NE Allen et al. Animal foods, protein, calcium and prostate cancer risk: the European Prospective Investigation into Cancer and Nutrition. British Journal of Cancer .2008. http://www.nature.com/bjc/journal/v98/n9/full/6604331a.html
  253. Duarte-Salles T, et al. Dairy products and risk of hepatocellular carcinoma: the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. Oct 2014. http://www.ncbi.nlm.nih.gov/pubmed/24615266
  254. Wang J, Li X, Zhang D. Dairy Product Consumption and Risk of Non-Hodgkin Lymphoma: A Meta-Analysis. Nutrients. Feb 27, 2016 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808850/
  255. Regal P, Cepeda A, Fente C. Development of an LC-MS/MS method to quantify sex hormones in bovine milk and influence of pregnancy in their levels. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012. http://www.ncbi.nlm.nih.gov/pubmed/22332636
  256. Dr Timothy J Key et al. The effect of diet on risk of cancer. The Lancet. Sep. 14, 2002. http://www.sciencedirect.com/science/article/pii/S0140673602099580
  257. Qin LQ et al. Low-fat milk promotes the development of 7,12-dimethylbenz(A)anthracene (DMBA)-induced mammary tumors in rats. Int J Cancer. Jul 1, 2004. http://onlinelibrary.wiley.com/doi/10.1002/ijc.20172/full
  258. Kazumi Maruyama, Tomoe Oshima and Kenji Ohyama. Exposure to exogenous estrogen through intake of commercial milk. Pediatrics International. Feb. 2010. http://onlinelibrary.wiley.com/doi/10.1111/j.1442-200X.2009.02890.x/abstract
  259. Farlow DW, Xu X, Veenstra TD. Comparison of estrone and 17β-estradiol levels in commercial goat and cow milk. J. Dairy Sci. Apr 2012. http://www.ncbi.nlm.nih.gov/pubmed/22459818
  260. Giovannucci E, Rimm EB, Wolk A. Calcium and fructose intake in relation to risk of prostate cancer. Cancer Res. 1998. http://cancerres.aacrjournals.org/content/58/3/442.full.pdf+html
  261. Melnik BC et al. The impact of cows milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Melnik et al. Nutrition & Metabolism. 2012. http://www.nutritionandmetabolism.com/content/9/1/74
  262. Harald zur Hausen, Ethel-Michele de Villiers. Dairy cattle serum and milk factors contributing to the risk of colon and breast cancers. IJC. Feb 2015. http://onlinelibrary.wiley.com/doi/10.1002/ijc.29466/full
  263. J Ji, J Sundquist, K Sundquist. Lactose intolerance and risk of lung, breast and ovarian cancers: aetiological clues from a population-based study in Sweden. Br J Cancer. Jan 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4453601/
  264. Yi Yu,, Hui Li, Kaiwu Xu et al. Dairy consumption and lung cancer risk: a meta-analysis of prospective cohort studies. OncoTargets and Therapy. Sep. 2015. https://www.dovepress.com/dairy-consumption-and-lung-cancer-risk-a-meta-analysis-of-prospective--peer-reviewed-fulltext-article-OTT#
  265. Yang Y et al. Dairy Product, Calcium Intake and Lung Cancer Risk: A Systematic Review with Meta-Analysis. Sci Rep. Feb 15, 2016 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753428/
  266. Guo Y1, Shan Z, Ren H, Chen W. Dairy consumption and gastric cancer risk: a meta-analysis of epidemiological studies. Nutr Cancer. 2015. http://www.ncbi.nlm.nih.gov/pubmed/25923921
  267. Yan Sun et al. Dairy product consumption and gastric cancer risk: a meta-analysis. World J Gastroenterol. Nov. 2014. http://www.ncbi.nlm.nih.gov/pubmed/25400475
  268. Shu-bo Tian et al. Association between Dairy Intake and Gastric Cancer: A Meta-Analysis of Observational Studies. PLoS One. Jul 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090187/
  269. Aykan, NF. Red Meat and Colorectal Cancer. Oncology reviews. Aug 2015. http://www.oncologyreviews.org/index.php/or/article/view/288/264
  270. Christina M Nagle et al. Cancers in Australia in 2010 attributable to the consumption of red and processed meat. Aust N Z J Public Health. Oct 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606774/
  271. Sabine Rohrmann, Jakob Linseisen. Processed meat: the real villain? Proceedings of the Nutrition Society. 2015. http://journals.cambridge.org/download.php?file=%2FPNS%2FS0029665115004255a.pdf&code=ebeaeca8B94edB7e388169c5ae3c5095
  272. Li F et al. Red and processed meat intake and risk of bladder cancer: a meta-analysis. Int J Clin Exp Med. Aug 15, 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161554/
  273. Maki Inoue-Choi et al. Red and processed meat, nitrite, and heme iron intakes and postmenopausal breast cancer risk in the NIH-AARP Diet and Health Study. International Journal of Cancer. Nov 20, 2015. http://onlinelibrary.wiley.com/doi/10.1002/ijc.29901/abstract
  274. Catsburg C et al. Dietary patterns and breast cancer risk: a study in 2 cohorts. Am J Clin Nutr. Apr 2015. http://www.ncbi.nlm.nih.gov/pubmed/25833979
  275. Kolahdooz F et al. Meat, fish, and ovarian cancer risk: results from 2 Australian case-control studies, a systematic review, and meta-analysis. Am J Clin Nutr.  Jun 2010 . http://ajcn.nutrition.org/content/91/6/1752.long
  276. Asha R. Kallianpur et al. Dietary Iron Intake and Risk of Endometrial Cancer: A Population-based Case-Control Study in Shanghai, China. Nutr Cancer. 2010. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310680/
  277. Klement RJ, Kämmerer U. Is There a Role for Carbohydrate Restriction in the Treatment and Prevention of Cancer? Nutr Metab. 2011. http://www.medscape.com/viewarticle/757713
  278. Fine EJ et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition. Oct 2012. http://www.nutritionjrnl.com/article/S0899-9007(12)00186-4/fulltext
  279. Ana M. Soto, Carlos Sonnenschein. Environmental causes of cancer: endocrine disruptors as carcinogens. Nat Rev Endocrinol. Jul 2010. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933258/
  280. Anastasia J. Sugeng et al. Hazard-Ranking of Agricultural Pesticides for Chronic Health Effects in Yuma County, Arizona. Sci Total Environ. Oct 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769516/
  281. Ming Ye et al. Occupational Pesticide Exposures and Respiratory Health. Int J Environ Res Public Health. Dec 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3881124/
  282. Hui Gao et al. Bisphenol A and Hormone-Associated Cancers: Current Progress and Perspectives. Medicine (Baltimore). Jan 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4602822/
  283. Kyle Steenland et al. Dioxin Revisited: Developments Since the 1997 IARC Classification of Dioxin as a Human Carcinogen. Environ Health Perspect. Sep 2004. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1247514/
  284. Kogevinas M. Human health effects of dioxins: cancer, reproductive and endocrine system effects. Hum Reprod Update. May-Jun 2001. http://humupd.oxfordjournals.org/content/7/3/331.long
  285. Ansari FA, Mahmood R. Sodium nitrite enhances generation of reactive oxygen species that decrease antioxidant power and inhibit plasma membrane redox system of human erythrocytes. Cell Biol Int. May 23, 2016. http://www.ncbi.nlm.nih.gov/pubmed/27214747
  286. Noorafshan A, Erfanizadeh M, Karbalay-Doust S. Sodium benzoate, a food preservative, induces anxiety and motor impairment in rats. Neurosciences (Riyadh). Jan 2014. http://www.ncbi.nlm.nih.gov/pubmed/24419445
  287. Zengin N et al. The evaluation of the genotoxicity of two food preservatives: sodium benzoate and potassium benzoate. Food Chem Toxicol. Apr 2011 . http://www.ncbi.nlm.nih.gov/pubmed/21130826
  288. Pugazhendhi D, Pope GS, Darbre PD. Oestrogenic activity of p-hydroxybenzoic acid (common metabolite of paraben esters) and methylparaben in human breast cancer cell lines. J Appl Toxicol. Jul-Aug 2005. http://www.ncbi.nlm.nih.gov/pubmed/16021681
  289. Tyler J. S. Smith et al. Caramel Color in Soft Drinks and Exposure to 4-Methylimidazole: A Quantitative Risk Assessment. PLoS One. Feb 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333292/
  290. Robinson L, Miller R. The Impact of Bisphenol A and Phthalates on Allergy, Asthma, and Immune Function: a Review of Latest Findings. Curr Environ Health Rep. Dec 2015 . http://link.springer.com/article/10.1007%2Fs40572-015-0066-8
  291. Jackye Peretz et al. Bisphenol A and Reproductive Health: Update of Experimental and Human Evidence, 2007–2013. Environ Health Perspect. Aug 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123031/
  292. Tarapore P et al. Exposure to bisphenol a correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PLoS One. Mar 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940879/
  293. Prins GS et al. Bisphenol A promotes human prostate stem-progenitor cell self-renewal and increases in vivo carcinogenesis in human prostate epithelium. Endocrinology. Mar 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929731/
  294. Brian L Sprague et al. Circulating serum xenoestrogens and mammographic breast density. Breast Cancer Res.2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053153/
  295. Gonzales JF et al. Applying the Precautionary Principle to Nutrition and Cancer. J Am Coll Nutr. May 2014 . http://www.ncbi.nlm.nih.gov/pubmed/24870117
  296. Servan-Schreiber, David. Anti cancer - A new way of life. 2009. p. 66.
  297. Marinac CR et al. Nightly Fasting Improves Breast Cancer Prognosis. JAMA Oncol. Aug 1, 2016 . http://oncology.jamanetwork.com/article.aspx?articleid=2506710
  298. Emma Marris. Transgenic fish go large. Nature. September 14 , 2010. http://www.nature.com/news/2010/100914/full/467259a.html
  299. Amy Maxmen. Politics holds back animal engineers. Nature. October 17 , 2012. http://www.nature.com/news/politics-holds-back-animal-engineers-1.11596?WT.ec_id=NATUREjobs-20121018
  300. Aris A, Leblanc S. Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada. Reprod Toxicol. May 2011 . http://www.ncbi.nlm.nih.gov/pubmed/21338670
  301. Barański M et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Jun 2014. http://www.ncbi.nlm.nih.gov/pubmed/2496810
  302. Giacosa A et al. Cancer prevention in Europe: the Mediterranean diet as a protective choice. Eur J Cancer Prev. Jan 2013. http://www.ncbi.nlm.nih.gov/pubmed/22644232
  303. V Benetou et al. Conformity to traditional Mediterranean diet and cancer incidence: the Greek EPIC cohort. Br J Cancer.  Jul 8, 2008. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2453039/
  304. E Couto et al. Mediterranean dietary pattern and cancer risk in the EPIC cohort. Br J Cancer. Apr 26, 2011. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3101925/
  305. Toledo E et al. Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial: A Randomized Clinical Trial. JAMA Intern Med.  Nov 2015 . https://www.ncbi.nlm.nih.gov/pubmed/26365989
  306. Schwingshackl L, Hoffmann G. Does a Mediterranean-Type Diet Reduce Cancer Risk? Curr Nutr Rep.  2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778149/
  307. Schoenberg MH. Physical Activity and Nutrition in Primary and Tertiary Prevention of Colorectal Cancer. Visc Med.  Jun 2016 . https://www.ncbi.nlm.nih.gov/pubmed/27493948
  308. Katherine Esposito et al. A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ Open. Aug 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538272/
  309. Bonaccio M et al. Mediterranean diet, dietary polyphenols and low-grade inflammation: results from the moli-sani study. Br J Clin Pharmacol. Mar 3, 2016 . https://www.ncbi.nlm.nih.gov/pubmed/26935858
  310. Djuric Z et al. Effects of a Mediterranean Diet Intervention on Anti- and Pro-Inflammatory Eicosanoids, Epithelial Proliferation, and Nuclear Morphology in Biopsies of Normal Colon Tissue. Nutr Cancer. 2015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486634/
  311. Ostan R et al. Inflammaging and cancer: a challenge for the Mediterranean diet. Nutrients.  Apr 9, 2015 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425163/
  312. Racker E, Spector M. Warburg effect revisited: merger of biochemistry and molecular biology. Science. Jul 17, 1981 . https://www.ncbi.nlm.nih.gov/pubmed/6264596
  313. Seyfried TN et al. Metabolic management of brain cancer. Biochim Biophys Acta. Jun 2011 . https://www.ncbi.nlm.nih.gov/pubmed/20804725
  314. Fine EJ et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition. Oct 2012. http://www.nutritionjrnl.com/article/S0899-9007(12)00186-4/fulltext
  315. Tan-Shalaby JL et al. Modified Atkins diet in advanced malignancies - final results of a safety and feasibility trial within the Veterans Affairs Pittsburgh Healthcare System. Nutr Metab (Lond). Aug 12, 2016 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983076/
  316. Klement RJ, Sweeney RA. Impact of a ketogenic diet intervention during radiotherapy on body composition: I. Initial clinical experience with six prospectively studied patients. BMC Res Notes. Mar 5, 2016 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779584/
  317. Jansen N, Walach H. The development of tumours under a ketogenic diet in association with the novel tumour marker TKTL1: A case series in general practice. Oncol Lett.  Jan 2016 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726921/
  318. Zuccoli G et al. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutr Metab (Lond). Apr 22, 2010 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874558/
  319. Schwartz K et al. Treatment of glioma patients with ketogenic diets: report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature. Cancer Metab. Mar 25, 2015 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371612/
  320. Rieger J et al. ERGO: a pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol. Jun 2014 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063533/
  321. Branco AF et al. Ketogenic diets: from cancer to mitochondrial diseases and beyond. Eur J Clin Invest. Mar 2016 . http://onlinelibrary.wiley.com/doi/10.1111/eci.12591/full
  322. Di Lorenzo C et al. Plant food supplements with anti-inflammatory properties: a systematic review (II). Crit Rev Food Sci Nutr. 2013. http://www.ncbi.nlm.nih.gov/pubmed/23391017
  323. Rafie Hamidpour et al. Frankincense (乳香 Rǔ Xiāng; Boswellia Species): From the Selection of Traditional Applications to the Novel Phytotherapy for the Prevention and Treatment of Serious Diseases. J Tradit Complement Med. Oct-Dec 2013 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924999/
  324. Kao TC, Wu CH, Yen GC. Bioactivity and potential health benefits of licorice. J Agric Food Chem. Jan 22, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24377378
  325. Kim EH et al. Anti-inflammatory effects of Scutellaria baicalensis extract via suppression of immune modulators and MAP kinase signaling molecules. J Ethnopharmacol. Nov 12, 2009 . http://www.ncbi.nlm.nih.gov/pubmed/19699788
  326. DK Patel et al. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed. Apr 2012. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609288/
  327. Panossian A, Wikman G. Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress—Protective Activity. Pharmaceuticals (Basel). Jan 2010 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991026/
  328. NAN XIA et al. Schisandra chinensis and Rhodiola rosea exert an anti-stress effect on the HPA axis and reduce hypothalamic c-Fos expression in rats subjected to repeated stress. Exp Ther Med. Jan 2016 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727095/
  329. K. Chandrasekhar, J Kapoor, S Anishetty. A Prospective, Randomized Double-Blind, Placebo-Controlled Study of Safety and Efficacy of a High-Concentration Full-Spectrum Extract of Ashwagandha Root in Reducing Stress and Anxiety in Adults. Indian J Psychol Med.  Jul-Sep 2012. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573577/
  330. Bhattacharyya P, Bishayee A. Ocimum sanctum Linn. (Tulsi): an ethnomedicinal plant for the prevention and treatment of cancer. Anticancer Drugs.  Aug 2013 . http://www.ncbi.nlm.nih.gov/pubmed/23629478
  331. Lian-Wen Qi, Chong-Zhi Wang, Chun-Su Yuan. Ginsenosides from American ginseng: Chemical and pharmacological diversity. Phytochemistry. Jun 2011 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103855/
  332. Wang ZY, Nixon DW. Licorice and cancer. Nutr Cancer. 2001. http://www.ncbi.nlm.nih.gov/pubmed/11588889
  333. Alena G. Guggenheim, Kirsten M. Wright, Heather L. Zwickey. Immune Modulation From Five Major Mushrooms: Application to Integrative Oncology. Integr Med (Encinitas). Feb 2014 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684115/
  334. Jung Y, Jerng U, Lee S. A systematic review of anticancer effects of Radix Astragali. Chin J Integr Med. Mar 2016 . http://www.ncbi.nlm.nih.gov/pubmed/26643507
  335. Panossian A, Wagner H. Stimulating effect of adaptogens: an overview with particular reference to their efficacy following single dose administration. Phytother Res. Oct 2005 . http://onlinelibrary.wiley.com/doi/10.1002/ptr.1751/epdf
  336. Duan P, Wang ZM. Clinical study on effect of Astragalus in efficacy enhancing and toxicity reducing of chemotherapy in patients of malignant tumor. Zhongguo Zhong Xi Yi Jie He Za Zhi. Jul 2002 . http://www.ncbi.nlm.nih.gov/pubmed/12592686
  337. Zou YH, Liu XM. Effect of astragalus injection combined with chemotherapy on quality of life in patients with advanced non-small cell lung cancer. Zhongguo Zhong Xi Yi Jie He Za Zhi. . [Online] Oct 2003 . http://www.ncbi.nlm.nih.gov/pubmed/14626183
  338. Suh SO et al. Effects of red ginseng upon postoperative immunity and survival in patients with stage III gastric cancer. Am J Chin Med. 2002. http://www.ncbi.nlm.nih.gov/pubmed/12568276
  339. Gao R, Jin J, Niu Y. Potentiated effects of total saponins of Panax ginseng on inhibition of leukemic cells by cytotoxic drugs. Zhongguo Zhong Xi Yi Jie He Za Zhi. Jan 1999. http://www.ncbi.nlm.nih.gov/pubmed/11783253
  340. Biswal BM et al. Effect of Withania somnifera (Ashwagandha) on the development of chemotherapy-induced fatigue and quality of life in breast cancer patients. Integr Cancer Ther. Jul 2013. http://www.ncbi.nlm.nih.gov/pubmed/23142798
  341. Sun LX et al. Protection against lung cancer patient plasma-induced lymphocyte suppression by Ganoderma lucidum polysaccharides. Cell Physiol Biochem. 2014. http://www.karger.com/Article/FullText/356669
  342. Panossian A, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. Jun 2010 . http://www.ncbi.nlm.nih.gov/pubmed/20378318
  343. Sarris J, McIntyre E, Camfield DA. Plant-based medicines for anxiety disorders, part 2: a review of clinical studies with supporting preclinical evidence. CNS Drugs. Apr 2013 . http://link.springer.com/article/10.1007%2Fs40263-013-0059-9
  344. Clare BA, Conroy RS, Spelman K. The diuretic effect in human subjects of an extract of Taraxacum officinale folium over a single day. J Altern Complement Med. Aug 2009 . http://www.ncbi.nlm.nih/pmc/articles/PMC3155102/
  345. Velazquez DV et al. Zea mays L. extracts modify glomerular function and potassium urinary excretion in conscious rats. Phytomedicine. May 2005. http://www.ncbi.nlm.nih.gov/pubmed/15957371
  346. Tahri A et al. Acute diuretic, natriuretic and hypotensive effects of a continuous perfusion of aqueous extract of Urtica dioica in the rat. J Ethnopharmacol. Nov 2000 . http://www.ncbi.nlm.nih.gov/pubmed/11025144
  347. Amsterdam JD et al. Chamomile (Matricaria recutita) May Have Antidepressant Activity in Anxious Depressed Humans - An Exploratory Study. Altern Ther Health Med. Sep-Oct 2012 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600408/
  348. Gilani AH et al. Antispasmodic and blood pressure lowering effects of Valeriana wallichii are mediated through K+ channel activation. J Ethnopharmacol. Sep 14, 2005 . http://www.ncbi.nlm.nih.gov/pubmed/16002246
  349. Nicholson JA, Darby TD, Jarboe CH. Viopudial, a Hypotensive and Smooth Muscle Antispasmodic from Viburnum opulusProc Soc Exp Biol Med. Jun 1972 . http://ebm.sagepub.com/content/140/2/457.abstract
  350. Mary C. Tassell et al. Hawthorn (Crataegus spp.) in the treatment of cardiovascular disease. Pharmacogn Rev. Jan-Jun 2010 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249900/
  351. Yoon Hee Cho et al. Therapeutic Effects of Water Soluble Danshen Extracts on Atherosclerosis. Evid Based Complement Alternat Med. Jan 16, 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562667/
  352. Kai Yue et al. The genus Cordyceps: a chemical and pharmacological review. Journal of Pharmacy And Pharmacology. Sep 17, 2012. http://onlinelibrary.wiley.com/doi/10.1111/j.2042-7158.2012.01601.x/epdf
  353. Han HJ et al. Effects of red ginseng extract on sleeping behaviors in human volunteers. J Ethnopharmacol. Sep 16, 2013 . http://www.ncbi.nlm.nih.gov/pubmed/23872254
  354. Ngan A, Conduit R. A double-blind, placebo-controlled investigation of the effects of Passiflora incarnata (passionflower) herbal tea on subjective sleep quality. Phytother Res. Aug 2011 . http://www.ncbi.nlm.nih.gov/pubmed/21294203
  355. Taavoni S et al. Effect of valerian on sleep quality in postmenopausal women: a randomized placebo-controlled clinical trial. Menopause. Sep 2011 . http://www.ncbi.nlm.nih.gov/pubmed/21775910
  356. Wang F et al. Effect of Ganoderma lucidum spores intervention on glucose and lipid metabolism gene expression profiles in type 2 diabetic rats. Lipids Health Dis. May 22, 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443549/
  357. Kazazis CE et al. The therapeutic potential of milk thistle in diabetes. Rev Diabet Stud. Aug 2014 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310066/
  358. Fan H et al. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells. Oncol Rep. May 2016. http://www.ncbi.nlm.nih.gov/pubmed/26985864
  359. Jiang Q et al. Scutellaria barbata D. Don inhibits growth and induces apoptosis by suppressing IL-6-inducible STAT3 pathway activation in human colorectal cancer cells. Exp Ther Med. Oct 2015 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578104/
  360. Auyeung KK, Law PC, Ko JK. Combined therapeutic effects of vinblastine and Astragalus saponins in human colon cancer cells and tumor xenograft via inhibition of tumor growth and proangiogenic factors. Nutr Cancer. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24660995
  361. Wang CZ et al. Red ginseng and cancer treatment. Chin J Nat Med. Jan 2016 . http://www.ncbi.nlm.nih.gov/pubmed/26850342
  362. Kumar D et al. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells. Biomed Pharmacother. Jul 2016 . http://www.ncbi.nlm.nih.gov/pubmed/27261574
  363. Saxena R et al. Ginger augmented chemotherapy: A novel multitarget nontoxic approach for cancer management. Mol Nutr Food Res. Jun 2016. http://www.ncbi.nlm.nih.gov/pubmed/26842968
  364. Assadollahi V, Gholami M, Zendedel A. C. zeylanicum aqueous extract induced apoptosis in the human myelocytic leukemia cell line (THP-1). Bratisl Lek Listy. 2015. http://www.ncbi.nlm.nih.gov/pubmed/25665482
  365. Hayakawa S et al. Anti-Cancer Effects of Green Tea by Either Anti- or Pro- Oxidative Mechanisms. Asian Pac J Cancer Prev. 2016. http://www.ncbi.nlm.nih.gov/pubmed/27221834
  366. Ko YS et al. Polyphenols from Artemisia annua L Inhibit Adhesion and EMT of Highly Metastatic Breast Cancer Cells MDA-MB-231. Phytother Res. May 6, 2016. http://www.ncbi.nlm.nih.gov/pubmed/27151203
  367. Madrigal-Santillán E et al. Review of natural products with hepatoprotective effects. World J Gastroenterol. Oct 28, 2014 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209543/
  368. Ming Hong et al. Current Status of Herbal Medicines in Chronic Liver Disease Therapy: The Biological Effects, Molecular Targets and Future Prospects. Int J Mol Sci. Dec 2, 2015 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691073/
  369. Zhang GL et al. Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice. World J Gastroenterol. Aug 2002 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656329/
  370. Yang QY, Lu S, Sun HR. Effects of astragalus on cardiac function and serum tumor necrosis factor-alpha level in patients with chronic heart failure. Zhongguo Zhong Xi Yi Jie He Za Zhi. Jul 2010 . http://www.ncbi.nlm.nih.gov./pubmed/20929124
  371. Brush J et al. The effect of Echinacea purpurea, Astragalus membranaceus and Glycyrrhiza glabra on CD69 expression and immune cell activation in humans. Phytother Res. Aug 2006 . http://www.ncbi.nlm.nih.gov/pubmed/16807880
  372. Zwickey H et al. The effect of Echinacea purpurea, Astragalus membranaceus and Glycyrrhiza glabra on CD25 expression in humans: a pilot study. Phytother Res. Nov 2007 . http://www.ncbi.nlm.nih.gov/pubmed/17661330
  373. Ziauddin M et al. Studies on the immunomodulatory effects of Ashwagandha. J Ethnopharmacol. Feb 1996 . http://www.ncbi.nlm.nih.gov/pubmed/8866726
  374. Li PL et al. Metabolomics study of hematopoietic function of Angelica sinensis on blood deficiency mice model. J Ethnopharmacol. May 26, 2015. http://www.ncbi.nlm.nih.gov/pubmed/25797116
  375. Jalilzadeh-Amin G et al. Antiulcer properties of Glycyrrhiza glabra L. extract on experimental models of gastric ulcer in mice. Iran J Pharm Res. 2015 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673944/
  376. Hage-Sleiman R, Mroueh M, Daher CF. Pharmacological evaluation of aqueous extract of Althaea officinalis flower grown in Lebanon. Pharm Biol. Mar 2011 . http://www.tandfonline.com/doi/full/10.3109/13880209.2010.516754
  377. Melese E et al. Evaluation of the antipeptic ulcer activity of the leaf extract of Plantago lanceolata L. in rodents. Phytother Res. Aug 2011 . http://onlinelibrary.wiley.com/doi/10.1002/ptr.3411/full
  378. Karen M Mustian et al. Treatment of Nausea and Vomiting During Chemotherapy. US Oncol Hematol. 2011. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898599/
  379. Domitrović R et al. Antifibrotic activity of Taraxacum officinale root in carbon tetrachloride-induced liver damage in mice. J Ethnopharmacol. Aug 9, 2010 . http://www.ncbi.nlm.nih.gov/pubmed/20561925
  380. Ben Salem M et al. Pharmacological Studies of Artichoke Leaf Extract and Their Health Benefits. Plant Foods Hum Nutr. Dec 2015 . http://www.ncbi.nlm.nih.gov/pubmed/26310198
  381. Schütz K, Carle R, Schieber A. Taraxacum--a review on its phytochemical and pharmacological profile. J Ethnopharmacol. Oct 11, 2006 . http://www.ncbi.nlm.nih.gov/pubmed/16950583
  382. AE, Al-Snafi. The Pharmaceutical Importance of Althaea officinalis and Althaea rosea : A Review. IJPRIF. Jul-Sep 2013 . http://sphinxsai.com/2013/JulySept13/phPDF/PT=57(1378-1385)JS13.pdf
  383. Dos Santos AC et al. Gastroprotective activity of the chloroform extract of the roots from Arctium lappa L. J Pharm Pharmacol. Jun 2008 . http://www.ncbi.nlm.nih.gov/pubmed/18498717
  384. Langmead L et al. Antioxidant effects of herbal therapies used by patients with inflammatory bowel disease: an in vitro study. Aliment Pharmacol Ther. Feb 2002 . http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2036.2002.01157.x/full
  385. Jin M et al. Structural features and biological activities of the polysaccharides from Astragalus membranaceusInt J Biol Macromol. Mar 2014 . http://www.ncbi.nlm.nih.gov/pubmed/24325861
  386. Ahn TS et al. Effects of Schisandra chinensis extract on gastrointestinal motility in mice. J Ethnopharmacol. Jul 1, 2015 . http://www.ncbi.nlm.nih.gov/pubmed/25862968
  387. Raveendra KR et al. An Extract of Glycyrrhiza glabra (GutGard) Alleviates Symptoms of Functional Dyspepsia: A Randomized, Double-Blind, Placebo-Controlled Study. Evid Based Complement Alternat Med. 2012. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123991/
  388. Lee Jia, Yuqing Zhao, Xing-Jie Liang. Current Evaluation of the Millennium Phytomedicine— Ginseng (II): Collected Chemical Entities, Modern Pharmacology, and Clinical Applications Emanated from Traditional Chinese Medicine. Curr Med Chem. 2009. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754208/
  389. Biswal BM et al. Effect of Withania somnifera (Ashwagandha) on the development of chemotherapy-induced fatigue and quality of life in breast cancer patients. Integr Cancer Ther. Jul 2013 . http://ict.sagepub.com/content/12/4/312.long
  390. Liu DL et al. Ganoderma lucidum derived ganoderenic acid B reverses ABCB1-mediated multidrug resistance in HepG2/ADM cells. Int J Oncol. May 2015 . https://www.spandidos-publications.com/ijo/46/5/2029
  391. Limtrakul P, Khantamat O, Pintha K. Inhibition of P-glycoprotein activity and reversal of cancer multidrug resistance by Momordica charantia extract. Cancer Chemother Pharmacol. Dec 2004 . http://www.ncbi.nlm.nih.gov/pubmed/15248030
  392. Hosseinzadeh L et al. Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food Chem Toxicol.  May 2011 . http://www.ncbi.nlm.nih.gov/pubmed/21295102
  393. Zhong ZF et al. Furanodiene alters mitochondrial function in doxorubicin-resistant MCF-7 human breast cancer cells in an AMPK-dependent manner. Mol Biosyst. Apr 26, 2016. http://www.ncbi.nlm.nih.gov/pubmed/26987443
  394. aleh EM et al. Antagonism between curcumin and the topoisomerase II inhibitor etoposide: a study of DNA damage, cell cycle regulation and death pathways. Cancer Biol Ther.  Sep 2012 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461813
  395. Sorensen LS et al. Effects of perioperative supplementation with omega-3 fatty acids on leukotriene B₄ and leukotriene B₅ production by stimulated neutrophils in patients with colorectal cancer: a randomized, placebo-controlled intervention trial. Nutrients. Sep 29, 2014 . www.ncbi.nlm.nih.gov/pmc/articles/PMC4210906/
  396. Wang D et al. Effects of omega-3 polyunsaturated fatty acids on postoperative inflammatory reaction and clinical efficacy. Zhonghua Wei Chang Wai Ke Za Zhi. Jul 2015 . www.ncbi.nlm.nih.gov/pubmed/26211765
  397. Ma YJ et al. The Consumption of Omega-3 Polyunsaturated Fatty Acids Improves Clinical Outcomes and Prognosis in Pancreatic Cancer Patients: A Systematic Evaluation. Nutr Cancer. Nov 25, 2014 . www.ncbi.nlm.nih.gov/pubmed/25425246
  398. Aronson WJ et al. Phase II prospective randomized trial of a low-fat diet with fish oil supplementation in men undergoing radical prostatectomy. Cancer Prev Res (Phila). Dec 2011 . www.ncbi.nlm.nih.gov/pmc/articles/PMC3232341/
  399. Galet C et al. Effect of a low-fat fish oil diet on proinflammatory eicosanoids and cell-cycle progression score in men undergoing radical prostatectomy. Cancer Prev Res (Phila). Jan 2014 . www.ncbi.nlm.nih.gov/pmc/articles/PMC3947245/
  400. Wuryanti S et al. The Effect of High Poly Unsaturated Fatty Acid (PUFA) Dietary Supplementation on Inflammatory Status of Patients with Advanced Cervical Cancer on Radiation Treatment. Acta Med Indones. Jan 2015 . www.inaactamedica.org/archives/2015/25948767.pdf
  401. Paiva AN et al. Beneficial effects of oral chromium picolinate supplementation on glycemic control in patients with type 2 diabetes: A randomized clinical study. J Trace Elem Med Biol. Oct 2015 . www.ncbi.nlm.nih.gov/pubmed/26302914
  402. Broadhurst CL, Domenico P. Clinical studies on chromium picolinate supplementation in diabetes mellitus--a review. Diabetes Technol Ther. Dec 2006 . www.ncbi.nlm.nih.gov/pubmed/17109600
  403. Docherty JP et al. A double-blind, placebo-controlled, exploratory trial of chromium picolinate in atypical depression: effect on carbohydrate craving. J Psychiatr Pract.  Sep 2005 . www.ncbi.nlm.nih.gov/pubmed/16184071
  404. Yin RV, Phung OJ. Effect of chromium supplementation on glycated hemoglobin and fasting plasma glucose in patients with diabetes mellitus. Nutr J.  Feb 13, 2015 . www.ncbi.nlm.nih.gov/pmc/articles/PMC4430034/
  405. Wang ZQ et al. Phenotype of Subjects with Type 2 Diabetes May Determine Clinical Response to Chromium Supplementation. Metabolism. Dec 2007. www.ncbi.nlm.nih.gov/pmc/articles/PMC3838889/
  406. Cefalu WT et al. Characterization of the Metabolic and Physiologic Response from Chromium Supplementation in Subjects with Type 2 Diabetes. Metabolism. May 2010 . www.ncbi.nlm.nih.gov/pmc/articles/PMC4020630/
  407. Shaik YB et al. Role of quercetin (a natural herbal compound) in allergy and inflammation. J Biol Regul Homeost Agents. Jul-Dec 2006. www.ncbi.nlm.nih.gov/pubmed/18187018
  408. Jantan I, Ahmad W, Bukhari SN. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front Plant Sci. Aug 25, 2015 . www.ncbi.nlm.nih.gov/pmc/articles/PMC4548092/
  409. Rosanoff A, Plesset MR. Oral magnesium supplements decrease high blood pressure (SBP>155 mmHg) in hypertensive subjects on anti-hypertensive medications: a targeted meta-analysis. Magnes Res. Jul-Sep 2013 . www.ncbi.nlm.nih.gov/pubmed/24134861
  410. Sarris J et al. S-adenosyl methionine (SAMe) versus escitalopram and placebo in major depression RCT: efficacy and effects of histamine and carnitine as moderators of response. J Affect Disord.  Aug 2014 . www.ncbi.nlm.nih.gov/pubmed/24856557
  411. Assi M, Rébillard A. The Janus-Faced Role of Antioxidants in Cancer Cachexia: New Insights on the Established Concepts. Oxid Med Cell Longev. Aug 24, 2016. www.ncbi.nlm.nih.gov/pmc/articles/PMC5013212/
  412. McCabe D, Colbeck M. The effectiveness of essential fatty acid, B vitamin, Vitamin C, magnesium and zinc supplementation for managing stress in women: a systematic review protocol. JBI Database System Rev Implement Rep. Aug 14, 2015 . http://journals.lww.com/jbisrir/Fulltext/2015/13070/The_effectiveness_of_essential_fatty_acid,_B.10.aspx#P79
  413. Brito A et al. Folate, vitamin B12 and human health. Rev Med Chil. Nov 2012 .  www.ncbi.nlm.nih.gov/pubmed/23677195
  414. Gruber BM. B-Group Vitamins: Chemoprevention? Adv Clin Exp Med. May-Jun 2016. www.advances.umed.wroc.pl/pdf/2016/25/3/561.pdf
  415. Kok DE et al. The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects. Clin Epigenetics. Nov 14, 2015 .  www.ncbi.nlm.nih.gov/pmc/articles/pmid/26568774/
  416. Bourre JM. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients. J Nutr Health Aging. Sep-Oct 2006 . www.bourre.fr/pdf/publications_scientifiques/259.pdf
  417. Mikkelsen K et al. Cognitive decline: A vitamin B perspective. Maturitas. Nov 2016 . www.sciencedirect.com/science/article/pii/S0378512216301852
  418. Mikkelsen K, Stojanovska L, Apostolopoulos V. The effects of vitamin B in depression. Curr Med Chem. Sep 20, 2016 . www.ncbi.nlm.nih.gov/pubmed/27655070
  419. Karakuła H et al. Does diet affect our mood? The significance of folic acid and homocysteine]. Pol Merkur Lekarski.  Feb 2009 . www.ncbi.nlm.nih.gov/pubmed/19388520
  420. Romain M et al. The role of Vitamin B12 in the critically ill--a review. Anaesth Intensive Care. Jul 2016 . www.ncbi.nlm.nih.gov/pubmed/27456173
  421. Shipton MJ, Thachil J. Vitamin B12 deficiency - A 21st century perspective. Clin Med (Lond). Apr 2015 . www.clinmed.rcpjournal.org/content/15/2/145.long
  422. Zhang SL et al. Effect of vitamin B supplementation on cancer incidence, death due to cancer, and total mortality. Medicine (Baltimore). Aug 2016 . www.ncbi.nlm.nih.gov/pmc/articles/PMC4979769/
  423. Zhang XH et al. Vitamin B6 and colorectal cancer: current evidence and future directions. World J Gastroenterol.  Feb 21, 2013 . www.ncbi.nlm.nih.gov/pmc/articles/PMC3581987/
  424. Matsubara K et al. Vitamin B6-mediated suppression of colon tumorigenesis, cell proliferation, and angiogenesis (review). J Nutr Biochem. May 2003 . www.ncbi.nlm.nih.gov/pubmed/12832027
  425. Komatsu S et al. Antitumor effect of vitamin B6 and its mechanisms. Biochim Biophys Acta. Apr 11, 2003 . www.ncbi.nlm.nih.gov/pubmed/12686121
  426. Vukelja SJ et al. . Pyridoxine for the palmar-plantar erythrodysesthesia syndrome. . Ann Intern Med . Oct 15, 1989. www.ncbi.nlm.nih.gov/pubmed/2529807
  427. Vail DM et al. Efficacy of pyridoxine to ameliorate the cutaneous toxicity associated with doxorubicin containing pegylated (Stealth) liposomes: a randomized, double-blind. Clin Cancer Res. Jun 1998. www.ncbi.nlm.nih.gov/pubmed/9626479
  428. Bailey LB et al. Biomarkers of Nutrition for Development-Folate Review. J Nutr. Jul 2015. www.ncbi.nlm.nih.gov/pmc/articles/PMC4478945
  429. Kim SJ et al. Plasma folate, vitamin B-6, and vitamin B-12 and breast cancer risk in BRCA1- and BRCA2-mutation carriers: a prospective study. Am J Clin Nutr. Sep 2016 . www.ncbi.nlm.nih.gov/pubmed/27465373
  430. Lin J et al. Plasma folate, vitamin B-6, vitamin B-12, and risk of breast cancer in women. Am J Clin Nutr. Mar 2008. ajcn.nutrition.org/content/87/3/734.long
  431. Ericson U et al. Plasma Folate Concentrations Are Positively Associated with Risk of Estrogen Receptor β Negative Breast Cancer in a Swedish Nested Case Control Study. J. Nutr. Sep 1, 2010. jn.nutrition.org/content/140/9/1661.long
  432. Vogelzang NJ et al. . Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol .Jul 15, 2003. www.ncbi.nlm.nih.gov/pubmed/12860938
  433. Salman M et al. Riboflavin Arrests Cisplatin-Induced Neurotoxicity by Ameliorating Cellular Damage in Dorsal Root Ganglion Cells. Biomed Res Int. Dec 2015.  www.ncbi.nlm.nih.gov/pmc/articles/PMC4681007/
  434. Hassan I, Chibber S, Naseem I. Vitamin B₂: a promising adjuvant in cisplatin based chemoradiotherapy by cellular redox management. Food Chem Toxicol. Sep 2013 . www.ncbi.nlm.nih.gov/pubmed/23872133
  435. Wiernik PH et al. . Hexamethylmelamine and low or moderate dose cisplatin with or without pyridoxine for treatment of advanced ovarian carcinoma: a study of the Eastern Cooperative Oncology Group. Cancer Invest . 1992. www.ncbi.nlm.nih.gov/pubmed/1735009
  436. Kim SW et al. Niacin alleviates TRAIL-mediated colon cancer cell death via autophagy flux activation. Oncotarget. Jan 26, 2016 . www.ncbi.nlm.nih.gov/pmc/articles/PMC4826210/
  437. Lee KW et al. Vitamin C and cancer chemoprevention: reappraisal. Am J Clin Nutr . Dec 2003 . ajcn.nutrition.org/content/78/6/1074.long
  438. Kontek R, Kontek B, Grzegorczyk K. Vitamin C modulates DNA damage induced by hydrogen peroxide in human colorectal adenocarcinoma cell lines (HT29) estimated by comet assay in vitro. Arch Med Sci. Dec 30, 2013 . www.ncbi.nlm.nih.gov/pmc/articles/PMC3902721/
  439. Young JI, Züchner S, Wang G. Regulation of the Epigenome by Vitamin C. Annu Rev Nutr.  May 6, 2015. www.ncbi.nlm.nih.gov/pubmed/25974700
  440. Sajadian SO et al. Vitamin C enhances epigenetic modifications induced by 5-azacytidine and cell cycle arrest in the hepatocellular carcinoma cell lines HLE and Huh7. Clin Epigenetics. Apr 30, 2016 .  www.ncbi.nlm.nih.gov/pubmed/27134688
  441. Maramag C et al. Effect of vitamin C on prostate cancer cells in vitro: effect on cell number, viability, and DNA synthesis. Prostate. Aug 1, 1997 . www.ncbi.nlm.nih.gov/pubmed/9254898
  442. Lin JR et al. Vitamin C protects against UV irradiation-induced apoptosis through reactivating silenced tumor suppressor genes p21 and p16 in a Tet-dependent DNA demethylation manner in human skin cancer cells. Cancer Biother Radiopharm. Aug 2014 . www.ncbi.nlm.nih.gov/pubmed/25003799
  443. World Cancer Resarch Fund/American Institute for Cancer Research. Food research and the prevention of cancer: a global perspective. . Washington, DC: American Institute for Cancer Research. 1997.
  444. Carr AC, Vissers MC. Synthetic or food-derived vitamin C--are they equally bioavailable? Nutrients. Oct 28, 2013 . www.ncbi.nlm.nih.gov/pmc/articles/PMC3847730/
  445. Uchida E et al. Absorption and excretion of ascorbic acid alone and in acerola (Malpighia emarginata) juice: comparison in healthy Japanese subjects. Biol Pharm Bull. 2011. www.ncbi.nlm.nih.gov/pubmed/22040889
  446. Vinson JA, Bose P. Comparative bioavailability to humans of ascorbic acid alone or in a citrus extract. . Am J Clin Nutr. Sep 1988 . www.ncbi.nlm.nih.gov/pubmed/3414575
  447. Vissers MC et al. Dietary ascorbate intake affects steady state tissue concentrations in vitamin C-deficient mice: tissue deficiency after suboptimal intake and superior bioavailability from a food source (kiwifruit). Am J Clin Nutr. Feb 2011 . www.ncbi.nlm.nih.gov/pubmed/21123463
  448. Lee DH, Jacobs DR Jr. Interaction among heme iron, zinc, and supplemental vitamin C intake on the risk of lung cancer: Iowa Women's Health Study. Nutr Cancer. 2005. www.ncbi.nlm.nih.gov/pubmed/16201844
  449. Edefonti V et al. Natural vitamin C intake and the risk of head and neck cancer: a pooled analysis in the International Head and Neck Cancer Epidemiology consortiuma,b. Int J Cancer. Jul 15, 2015 . www.ncbi.nlm.nih.gov/pmc/articles/PMC4428957/
  450. Li Q et al. Vitamin or mineral supplement intake and the risk of head and neck cancer: pooled analysis in the INHANCE consortium. Int J Cancer. Oct 1, 2012. www.ncbi.nlm.nih.gov/pmc/articles/PMC3376697/
  451. Bo Y et al. Association between dietary vitamin C intake and risk of esophageal cancer: A dose-response meta-analysis. Int J Cancer. Apr 15, 2016 . www.ncbi.nlm.nih.gov/pubmed/26355388
  452. de Munter L et al. Vitamin and carotenoid intake and risk of head-neck cancer subtypes in the Netherlands Cohort Study. Am J Clin Nutr. Aug 2015 . www.ncbi.nlm.nih.gov/pubmed/26156734
  453. Bai XY et al. Association between Dietary Vitamin C Intake and Risk of Prostate Cancer: A Meta-analysis Involving 103,658 Subjects. J Cancer. Jul 28, 2015. www.ncbi.nlm.nih.gov/pmc/articles/PMC4532989/
  454. Gaziano JM et al. Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians' Health Study II randomized controlled trial. JAMA. Jan 7, 2009. www.ncbi.nlm.nih.gov/pubmed/19066368
  455. Wang L et al. Vitamin E and C supplementation and risk of cancer in men: posttrial follow-up in the Physicians' Health Study II randomized trial. Am J Clin Nutr. Sep 2014 . www.ncbi.nlm.nih.gov/pubmed/25008853
  456. Jeurnink SM et al. Plasma carotenoids, vitamin C, retinol and tocopherols levels and pancreatic cancer risk within the European Prospective Investigation into Cancer and Nutrition: a nested case-control study: plasma micronutrients and pancreatic cancer risk. Int J Cancer.  Mar 15, 2015 .  www.ncbi.nlm.nih.gov/pubmed/25175624
  457. Ma Y et al. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. Feb 5, 2014 . www.ncbi.nlm.nih.gov/pubmed/24500406
  458. Fritz H et al. Intravenous Vitamin C and Cancer: A Systematic Review. Integr Cancer Ther.  Jul 2014 . www.ncbi.nlm.nih.gov/pubmed/24867961
  459. Wilson MK et al. Review of high-dose intravenous vitamin C as an anticancer agent. Asia Pac J Clin Oncol. Mar 2014 . www.ncbi.nlm.nih.gov/pubmed/24571058
  460. Jacobs C et al. Is There a Role for Oral or Intravenous Ascorbate (Vitamin C) in Treating Patients With Cancer? A Systematic Review. Oncologist. Feb 2015 .  www.ncbi.nlm.nih.gov/pmc/articles/PMC4319640/
  461. Stargrove M B, Treasure J, McKee D. L. Herb, Nutrient, and Drug Interactions. Elsevier. 2008.
  462. 461. Weijl NI et al. . Cisplatin combination chemotherapy induces a fall in plasma antioxidants of cancer patients. . Ann Oncol .1998. annonc.oxfordjournals.org/content/9/12/1331.full.pdf
  463. Weijl NI et al. . Cisplatin combination chemotherapy induces a fall in plasma antioxidants of cancer patients. . Ann Oncol .1998. annonc.oxfordjournals.org/content/9/12/1331.full.pdf
  464. Leekha A et al. Vitamin C in synergism with cisplatin induces cell death in cervical cancer cells through altered redox cycling and p53 upregulation. J Cancer Res Clin Oncol. Dec 2016 . www.ncbi.nlm.nih.gov/pubmed/27613187
  465. Berenson JR et al. Bortezomib, ascorbic acid and melphalan (BAM) therapy for patients with newly diagnosed multiple myeloma: an effective and well-tolerated frontline regimen. Eur J Haematol. Jun 2009 . www.ncbi.nlm.nih.gov/pubmed/19226361/
  466. Goel SAS et al. Emerging role of ascorbic acid in the management of advanced breast carcinoma as a chemosensitizer. Asian J Surg. 1999.
  467. Rutkowski M, Grzegorczyk K. Adverse effects of antioxidative vitamins. . Int J Occup Med Environ Health. Jun 2012 . www.ncbi.nlm.nih.gov/pubmed/22528540
  468. Thomas LD et al. Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Intern Med. Mar 11, 2013 . www.ncbi.nlm.nih.gov/pubmed/23381591
  469. Ross AC et al. . Dietary reference intakes for calcium and vitamin DNational Academies Press. 2011. www.ncbi.nlm.nih.gov/pubmed/21796828
  470. VitaminD. naturaldatabase. http://naturaldatabase.therapeuticresearch.com/nd/Search.aspx?cs=NONMP&s=ND&pt=100&id=929&ds=
  471. How do I get the vitamin D my body needs? Vitamin D Council. www.vitamindcouncil.org/about-vitamin-d/how-do-i-get-the-vitamin-d-my-body-needs/
  472. Grant WB. The likely role of vitamin D from solar ultraviolet-B irradiance in increasing cancer survival. . Anticancer Res. Jul-Aug 2006 . http://ar.iiarjournals.org/content/26/4A/2605.long
  473. Schwartz GG, Hanchette CL. UV, latitude, and spatial trends in prostate cancer mortality: all sunlight is not the same (United States). . Cancer Causes Control. Oct 2006 . http://link.springer.com/article/10.1007%2Fs10552-006-0050-6
  474. Li H et al. A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer . PLoS Med. Mar 2007 . www.ncbi.nlm.nih.gov/pubmed/17388667
  475. Hughes AM et al. . Sun exposure may protect against non-Hodgkin lymphoma: a case-control study. . Int J Cancer. Dec 10, 2004 . www.ncbi.nlm.nih.gov/pubmed/15386383
  476. Hartge P et al. Ultraviolet radiation, dietary vitamin D, and risk of non-Hodgkin lymphoma (United States). . Cancer Causes Control. Oct 2006 . www.ncbi.nlm.nih.gov/pubmed/16933055
  477. Pérez-López et al. . Review article: vitamin D acquisition and breast cancer risk. Reproductive sciences . 2009. www.ncbi.nlm.nih.gov/pubmed/19144887
  478. Abbas S, Linseisen J, Chang-Claude J. Dietary vitamin d and calcium intake and premenopausal breast cancer risk in a german case-control study. Nutr Cancer. 2007. www.tandfonline.com/doi/full/10.1080/01635580701390223
  479. Palmer et al. . Predicted 25-hydroxyvitamin D in relation to incidence of breast cancer in a large cohort of African American women. Breast Cancer Research . Aug 12, 2016. www.ncbi.nlm.nih.gov/pmc/articles/PMC4983060/
  480. Moan J et al. . Solar radiation, vitamin D and survival rate of colon cancer in Norway. . J Photochem Photobiol B. Mar 1, 2005 . www.ncbi.nlm.nih.gov/pubmed/15708515
  481. Slattery ML et al. . Associations between vitamin D, vitamin D receptor gene and the androgen receptor gene with colon and rectal cancer. Int J Cancer. Jun 15, 2006 . http://onlinelibrary.wiley.com/doi/10.1002/ijc.21791/abstract;jsessionid=DFE431C525A48C32FAE0869993EA5F02.f01t01 
  482. Tworoger SS et al. Plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D and risk of incident ovarian cancer. . Cancer Epidemiol Biomarkers Prev. Apr 2007 . http://cebp.aacrjournals.org/content/16/4/783.long
  483. Aguirre M, et al. Vitamin D deficiency in patients admitted to the general ward with breast, lung, and colorectal cancer in Buenos Aires, Argentina. Archives of osteoporosis . Jan 5, 2016. http://link.springer.com/article/10.1007%2Fs11657-015-0256-x
  484. Mohr SB. et al. Could vitamin D sufficiency improve the survival of colorectal cancer patients? The Journal of steroid biochemistry and molecular biology . 2015. www.ncbi.nlm.nih.gov/pubmed/25533386
  485. Maalmi H et al. Serum 25-hydroxyvitamin D levels and survival in colorectal and breast cancer patients: Systematic review and meta-analysis of prospective cohort studies. Eur J Cancer. May 2014. www.ncbi.nlm.nih.gov/pubmed/24582912
  486. Rose AA et al. Blood levels of vitamin D and early stage breast cancer prognosis: a systematic review and meta-analysis. Breast Cancer Res Treat. Oct 2013 . www.ncbi.nlm.nih.gov/pubmed/24104883
  487. Webb PM et al. Circulating 25-hydroxyvitamin D and survival in women with ovarian cancer. Am J Clin Nutr. Jul 2015 . www.ncbi.nlm.nih.gov/pubmed/25971716
  488. Li M et al. Review: the impacts of circulating 25-hydroxyvitamin D levels on cancer patient outcomes: a systematic review and meta-analysis. J Clin Endocrinol Metab. Jul 2014 . www.ncbi.nlm.nih.gov/pubmed/24780061
  489. Zhou W et al. . Circulating 25-hydroxyvitamin D levels predict survival in early-stage non-small-cell lung cancer patients. J Clin Oncol. Feb 10, 2007 . www.ncbi.nlm.nih.gov/pubmed/17290055
  490. Goodwin PJ et al. Prognostic effects of 25-hydroxyvitamin D levels in early breast cancer. J Clin Oncol. Aug 10, 2009 . www.ncbi.nlm.nih.gov/pubmed/19451439
  491. Keum N, Giovannucci E. Vitamin D supplements and cancer incidence and mortality: a meta-analysis. Br J Cancer. Aug 26, 2014 . www.ncbi.nlm.nih.gov/pmc/articles/PMC4150260/
  492. Bischoff-Ferrari HA et al. Benefit-risk assessment of vitamin D supplementation. Osteoporos Int. Jul 2010 . www.ncbi.nlm.nih.gov/pmc/articles/PMC3062161/
  493. Helzlsouer KJ; VDPP Steering Committee. Overview of the Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. Am J Epidemiol. Jul 1, 2010 . www.ncbi.nlm.nih.gov/pubmed/20562193
  494. Stone WL et al. Infants discriminate between natural and synthetic Vitamin EAm J Clin Nutr. Apr 2003 . http://ajcn.nutrition.org/content/77/4/899.full.pdf
  495. Burton GW et al. Human plasma and tissue alpha-tocopherol concentrations in response to supplementation with deuterated natural and synthetic Vitamin EAm J Clin Nutr.  Apr 1998 . www.ncbi.nlm.nih.gov/pubmed/9537614
  496. Chikako Kivose et al. Biodiscrimination of a-tocopherol stereoisomers in humans after oral administration. Am J Clin Nutr . Mar 1997 . www.ncbi.nlm.nih.gov/pubmed/9062530
  497. Brigelius-Flohé R et al. The European perspective on Vitamin E: current knowledge and future research. Am J Clin Nutr. Oct 2002. http://ajcn.nutrition.org/content/76/4/703.long
  498. Taylor PR et al. Prospective study of serum Vitamin E levels and esophageal and gastric cancers. J Natl Cancer Inst. Sep 17, 2003 . www.ncbi.nlm.nih.gov/pubmed/13130117
  499. Chen F et al. Association of vitamin C, vitamin D, Vitamin E and risk of bladder cancer: a dose-response meta-analysis. Sci Rep. Apr 23, 2015.  www.ncbi.nlm.nih.gov /pubmed/25905583
  500. Taylor PR et al. Prevention of esophageal cancer: the nutrition intervention trials in Linxian, China. Linxian Nutrition Intervention Trials Study Group. Cancer Res. Apr 1, 1994. http://cancerres.aacrjournals.org/content/54/7_Supplement/2029s.long
  501. O.P. Heinonen et al. The effect of Vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N Engl J Med. Apr 14, 1994 . www.nejm.org/doi/full/10.1056/NEJM199404143301501
  502. Hartman TJ et al. Effects of long-term α-tocopherol supplementation on serum hormones in older men. The Prostate. Jan 31, 2001. http://onlinelibrary.wiley.com/doi/10.1002/1097-0045(200101)46:1%3C33::AID-PROS1005%3E3.0.CO;2-6/abstract
  503. Klein EA et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA.  Oct 12, 2011 . www.ncbi.nlm.nih.gov/pubmed/21990298
  504. Das Gupta S, Suh N. Tocopherols in cancer: An update. Mol Nutr Food Res. Jun 2016 . http://onlinelibrary.wiley.com/doi/10.1002/mnfr.201500847/full
  505. Pace A et al. Vitamin E neuroprotection for cisplatin neuropathy: a randomized, placebo-controlled trial. Neurology. Mar 2, 2010 . www.ncbi.nlm.nih.gov/pubmed/20194916
  506. Argyriou AA et al. A randomized controlled trial evaluating the efficacy and safety of Vitamin E supplementation for protection against cisplatin-induced peripheral neuropathy: final results. Support Care Cancer. Nov 2006 . www.ncbi.nlm.nih.gov/pubmed/16622646
  507. Sato R et al. Prospective study of carotenoids, tocopherols, and retinoid concentrations and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev. May 2002 . www.ncbi.nlm.nih.gov/pubmed/12010859
  508. Leenders M et al. Plasma and dietary carotenoids and vitamins A, C and E and risk of colon and rectal cancer in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer.  Dec 15, 2014 . www.ncbi.nlm.nih.gov/pubmed/24771392
  509. Persson C et al. Plasma levels of carotenoids, retinol and tocopherol and the risk of gastric cancer in Japan: a nested case-control study. Carcinogenesis. May 2008 . www.ncbi.nlm.nih.gov/pubmed/18339681
  510. Abnet CC et al. Prospective study of serum retinol, beta-carotene, beta-cryptoxanthin, and lutein/zeaxanthin and esophageal and gastric cancers in China. Cancer Causes Control. Sep 2003 . www-ncbi-nlm-nih-gov/pubmed/14575362
  511. Key TJ et al. Carotenoids, retinol, tocopherols, and prostate cancer risk: pooled analysis of 15 studies. Am J Clin Nutr. Nov 2015 . www.ncbi.nlm.nih.gov/pubmed/26447150
  512. Leoncini E et al. Carotenoid Intake from Natural Sources and Head and Neck Cancer: A Systematic Review and Meta-analysis of Epidemiological Studies. Cancer Epidemiol Biomarkers Prev. Jul 2015 . http://cebp.aacrjournals.org/content/24/7/1003.long
  513. Na Yu et al. Association of Dietary Vitamin A and β-Carotene Intake with the Risk of Lung Cancer: A Meta-Analysis of 19 Publications. Nutrients. Nov 2015 . www.ncbi.nlm.nih.gov/pmc/articles/PMC4663591/
  514. Omenn GS et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst. Nov 6, 1996 . www.ncbi.nlm.nih.gov/pubmed/8901853
  515. Incidence of Cancer and Mortality Following α-Tocopherol and β-Carotene Supplementation A Postintervention Follow-up. JAMA. Jul 2003. http://jamanetwork.com/journals/jama/fullarticle/196991
  516. Goodman GE et al. The Beta-Carotene and Retinol Efficacy Trial: incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. J Natl Cancer Inst.  Dec 1, 2004 . http://jnci.oxfordjournals.org/content/96/23/1743.long
  517. Brozmanová J et al. Selenium: a double-edged sword for defense and offence in cancer. Arch Toxicol. Dec 2010 . http://link.springer.com/article/10.1007%2Fs00204-010-0595-8
  518. Patrick L. Selenium biochemistry and cancer: a review of the literature. Altern Med Rev. Sep 2004 . http://www.altmedrev.com/publications/9/3/239.pdf
  519. Kieliszek M, Błażejak S. Current Knowledge on the Importance of Selenium in Food for Living Organisms: A Review. Molecules. May 10, 2016 . https://www.ncbi.nlm.nih.gov/pubmed/27171069
  520. Köhrle J. Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes. Oct 2015 . https://www.ncbi.nlm.nih.gov/pubmed/26313901
  521. Chen J et al. Association between intake of antioxidants and pancreatic cancer risk: a meta-analysis. Int J Food Sci Nutr. Jun 30, 2016 . http://www.ncbi.nlm.nih.gov/pubmed/27356952
  522. Jablonska E et al. Lung cancer risk associated with selenium status is modified in smoking individuals by Sep15 polymorphism. Eur J Nutr. Feb 2008 . http://www.ncbi.nlm.nih.gov/pubmed/18239845?dopt=Abstract
  523. Méplan C et al. Relative abundance of selenoprotein P isoforms in human plasma depends on genotype, se intake, and cancer status. Antioxid Redox Signal. Nov 2009 . http://www.ncbi.nlm.nih.gov/pubmed/19453253?dopt=Abstract
  524. Vinceti M et al. Selenium for preventing cancer. Cochrane Database Syst Rev. Mar 30, 2014 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441528/
  525. Reid ME et al. The nutritional prevention of cancer: 400 mcg per day selenium treatment. Nutr Cancer. 2008. http://www.encognitive.com/files/The%20Nutritional%20Prevention%20of%20Cancer:%20400%20Mcg%20Per%20Day%20Selenium%20Treatment.pdf
  526. Kucharzewski M et al. Concentration of selenium in the whole blood and the thyroid tissue of patients with various thyroid diseases. Biol Trace Elem Res. Jul 2002 . https://www.ncbi.nlm.nih.gov/pubmed/12117262
  527. Lacka K, Szeliga A. Significance of selenium in thyroid physiology and pathology. Pol Merkur Lekarski. Jun 2015 . https://www.ncbi.nlm.nih.gov/pubmed/26098657
  528. Duntas LH. The role of selenium in thyroid autoimmunity and cancer. Thyroid. May 2006 . https://www.ncbi.nlm.nih.gov/pubmed/16756467
  529. Jonklaas J, Danielsen M, Wang H. A pilot study of serum selenium, vitamin D, and thyrotropin concentrations in patients with thyroid cancer. Thyroid. Sep 2013 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770246/
  530. Babaknejad N et al. The relationship between selenium levels and breast cancer: a systematic review and meta-analysis. Biol Trace Elem Res. Jun 2014 . https://www.ncbi.nlm.nih.gov/pubmed/24859854
  531. Rocha KC et al. Impact of Selenium Supplementation in Neutropenia and Immunoglobulin Production in Childhood Cancer Patients. J Med Food. Jun 2016 . http://www.ncbi.nlm.nih.gov/pubmed/27266340
  532. Elango S, Subbiah U, Jain J. Differential Behaviour of Selenium Analogs against Anticancer Drug Induced Apoptosis of Lymphocytes in Human Peripheral Blood. Asian Pac J Cancer Prev. 2016. https://www.ncbi.nlm.nih.gov/pubmed/27268624
  533. Vieira ML et al. Supplementation with selenium can influence nausea, fatigue, physical, renal, and liver function of children and adolescents with cancer. J Med Food. Jan 2015 . http://www.ncbi.nlm.nih.gov/pubmed/25379637
  534. Selenium - Dietary Supplement Fact Sheet. NIH. https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/
  535. Gontero P et al. A randomized double-blind placebo controlled phase I–II study on clinical and molecular effects of dietary supplements in men with precancerous prostatic lesions. Chemoprevention or “chemopromotion”? Prostate. Aug 1, 2015 . http://onlinelibrary.wiley.com/doi/10.1002/pros.22999/full#pros22999-bib-0009
  536. Bost M et al. Dietary copper and human health: Current evidence and unresolved issues. J Trace Elem Med Biol. May 2016 . http://www.sciencedirect.com/science/article/pii/S0946672X16300207
  537. Urso E, Maffia M. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems. J Vasc Res. 2015.  https://www.ncbi.nlm.nih.gov/pubmed/26484858
  538. Dardenne M. Zinc and immune function. Eur J Clin Nutr.  Aug 2002 . http://www.nature.com/ejcn/journal/v56/n3s/pdf/1601479a.pdf
  539. Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol. May 2008 .  https://www.ncbi.nlm.nih.gov/pubmed/18054190/
  540. Prasad AS et al. Zinc in cancer prevention. Nutr Cancer. 2009.  https://www.ncbi.nlm.nih.gov/pubmed/20155630
  541. Kocdor H et al. Zinc supplementation induces apoptosis and enhances antitumor efficacy of docetaxel in non-small-cell lung cancer. Drug Des Devel Ther. Jul 27, 2015 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524380/
  542. Nasulewicz A, Mazur A, Opolski A. Role of copper in tumour angiogenesis--clinical implications. J Trace Elem Med Biol. Sep 14 , 2004. http://www.sciencedirect.com/science/article/pii/S0946672X04000082
  543. Wachsmann J, Peng F. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma. World J Gastroenterol. Jan 7, 2016 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698487/
  544. Ribeiro SM et al. Copper-Zinc ratio and nutritional status in colorectal cancer patients during the perioperative period. Acta Cir Bras. 2016. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-86502016001300024&lng=en&nrm=iso&tlng=en
  545. Mao S, Huang S. Zinc and copper levels in bladder cancer: a systematic review and meta-analysis. Biol Trace Elem Res. Jun 2013 . http://link.springer.com/article/10.1007%2Fs12011-013-9682-z
  546. Ressnerova A et al. Zinc and Copper Homeostasis in Head and Neck Cancer: Review and Meta-Analysis. Curr Med Chem. 2016. http://www.ncbi.nlm.nih.gov/pubmed/27048341
  547. Ajayi GO. Copper and zinc concentrations in Nigerian women with breast cancer. Eur J Gynaecol Oncol. 2011. https://www.ncbi.nlm.nih.gov/pubmed/21797123
  548. Yoshida D, Ikeda Y, Nakazawa S. Quantitative analysis of copper, zinc and copper/zinc ratio in selected human brain tumors. Journal of Neuro-Oncology. Jun 1993. http://link.springer.com/article/10.1007%2FBF01324697
  549. Leone N et al. Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology. May 2006 . https://www.ncbi.nlm.nih.gov/pubmed/16570028?dopt=Abstract
  550. Wu T et al. Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol. Mar 2004 . https://www.ncbi.nlm.nih.gov/pubmed/15036223?dopt=Abstract
  551. Fotiou K et al. Serum ceruloplasmin as a marker in prostate cancer. Minerva Urol Nefrol. Dec 2007 . https://www.ncbi.nlm.nih.gov/pubmed/17947957
  552. Nayak SB et al. Copper and ceruloplasmin status in serum of prostate and colon cancer patients. Indian J Physiol Pharmacol. Jan 2003. https://www.ncbi.nlm.nih.gov/pubmed/12708132
  553. Lokamani I et al. Gelsolin and ceruloplasmin as potential predictive biomarkers for cervical cancer by 2D-DIGE proteomics analysis. Pathol Oncol Res. Jan 2014 . https://www.ncbi.nlm.nih.gov/pubmed/23925487
  554. Hashemian M et al. Dietary intake of minerals and risk of esophageal squamous cell carcinoma: results from the Golestan Cohort Study. Am J Clin Nutr. Jul 2015 . https://www.ncbi.nlm.nih.gov/pubmed/26016858
  555. Lee DH et al. Heme iron, zinc, alcohol consumption, and colon cancer: Iowa Women's Health Study. J Natl Cancer Inst. Mar 3, 2004. https://www.ncbi.nlm.nih.gov/pubmed/14996862
  556. Li P et al. Association between zinc intake and risk of digestive tract cancers: a systematic review and meta-analysis. Clin Nutr. Jun 2014 . https://www.ncbi.nlm.nih.gov/pubmed/24148607
  557. Wagner SE et al. Soil zinc content, groundwater usage, and prostate cancer incidence in South Carolina. Cancer Causes Control. Apr 2009 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2959174/
  558. Yan M, Hardin K, Ho E. Differential response to zinc-induced apoptosis in benign prostate hyperplasia and prostate cancer cells☆. J Nutr Biochem. Aug 2010. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125128/
  559. Wei H et al. Differential expression of metallothioneins (MTs) 1, 2, and 3 in response to zinc treatment in human prostate normal and malignant cells and tissues. Mol Cancer. Jan 21, 2008 . https://www.ncbi.nlm.nih.gov/pubmed/18208603
  560. Ku JH et al. The role of survivin and Bcl-2 in zinc-induced apoptosis in prostate cancer cells. Urol Oncol. Sep 2012 . https://www.ncbi.nlm.nih.gov/pubmed/20822926
  561. Gonzalez A et al. ZINC INTAKE FROM SUPPLEMENTS AND DIET AND PROSTATE CANCER. Nutr Cancer. 2009. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664741/
  562. Gallus S et al. Dietary zinc and prostate cancer risk: a case-control study from Italy. Eur Urol. Oct 2007 . https://www.ncbi.nlm.nih.gov/pubmed/17292532?dopt=Abstract
  563. Kocdor H et al. Zinc supplementation induces apoptosis and enhances antitumor efficacy of docetaxel in non-small-cell lung cancer. Drug Des Devel Ther. Jul 27, 2015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524380/
  564. Toyokuni S. Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci. Jan 2009 . https://www.ncbi.nlm.nih.gov/pubmed/19018762
  565. Huang X. Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res. Dec 10, 2003. https://www.ncbi.nlm.nih.gov/pubmed/14643418
  566. Ng O. Iron, microbiota and colorectal cancer. Wien Med Wochenschr. Oct 2016 . https://www.ncbi.nlm.nih.gov/pubmed/27577249
  567. Tappel A. Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. Med Hypotheses. 2007. https://www.ncbi.nlm.nih.gov/pubmed/17045417
  568. Tasevska N et al. A prospective study of meat, cooking methods, meat mutagens, heme iron, and lung cancer risks. Am J Clin Nutr. Jun 2009 . https://www.ncbi.nlm.nih.gov/pubmed/19369370
  569. Taunk P, Hecht E, Stolzenberg-Solomon R. Are meat and heme iron intake associated with pancreatic cancer? Results from the NIH-AARP diet and health cohort. Int J Cancer.  May 1, 2016 . https://www.ncbi.nlm.nih.gov/pubmed/26666579
  570. Diallo A et al. Dietary iron intake and breast cancer risk: modulation by an antioxidant supplementation. Oncotarget. Oct 12, 2016 .  https://www.ncbi.nlm.nih.gov/pubmed/27738321
  571. Ashmore JH et al. Association of dietary and supplemental iron and colorectal cancer in a population-based study. Eur J Cancer Prev. Nov 2013 . https://www.ncbi.nlm.nih.gov/pubmed/23492957
  572. Xue X et al. Iron Uptake via DMT1 Integrates Cell Cycle with JAK-STAT3 Signaling to Promote Colorectal Tumorigenesis. Cell Metab. Sep 13, 2016 . https://www.ncbi.nlm.nih.gov/pubmed/27546461
  573. Ng O . Iron, microbiota and colorectal cancer. Wien Med Wochenschr. Oct 2016. https://www.ncbi.nlm.nih.gov/pubmed/27577249
  574. Molina-Montes E et al. Dietary intake of iron, heme-iron and magnesium and pancreatic cancer risk in the European prospective investigation into cancer and nutrition cohort. Int J Cancer. Oct 1, 2012 . https://www.ncbi.nlm.nih.gov/pubmed/22438075
  575. Kesavan Y et al. A prospective study of magnesium and iron intake and pancreatic cancer in men. Am J Epidemiol. Jan 15, 2010. https://www.ncbi.nlm.nih.gov/pubmed/20022893
  576. Shrotriya S, Agarwal R, Sclafani RA. A perspective on chemoprevention by resveratrol in head and neck squamous cell carcinoma. Adv Exp Med Biol. 2015. http://www.ncbi.nlm.nih.gov/pubmed/25427916
  577. Ji Q et al. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One. Nov 11, 2013 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823921/
  578. L. M. Howells et al. Phase I randomised double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases - safety, pharmacokinetics and pharmacodynamics. Cancer Prev Res (Phila). Sep 2011. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173869/
  579. Popat R et al. A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. British Journal of Haematology. March 2013. http://onlinelibrary.wiley.com/doi/10.1111/bjh.12154/full
  580. Gescher A, Steward WP, Brown K. Resveratrol in the management of human cancer: how strong is the clinical evidence? Ann N Y Acad Sci. Jul 2013 . http://onlinelibrary.wiley.com/doi/10.1111/nyas.12205/full
  581. H-H. Sherry Chow et al. Resveratrol Modulates Drug- and Carcinogen-Metabolizing Enzymes in a Healthy Volunteer Study. Cancer prevention research. Sep 2010. http://cancerpreventionresearch.aacrjournals.org/content/3/9/1168
  582. Yang CS et al. Cancer prevention by tea: Evidence from laboratory studies. Pharmacol Res. Aug 2011 . http://www.sciencedirect.com/science/article/pii/S104366181100065X
  583. Fen Hu et al. EGCG synergizes the therapeutic effect of cisplatin and oxaliplatin through autophagic pathway in human colorectal cancer cells. Journal of Pharmacological Sciences. May 2015. http://www.sciencedirect.com/science/article/pii/S1347861315000766
  584. Yiannakopoulou EC. Interaction of green tea catechins with breast cancer endocrine treatment: a systematic review. Pharmacology. Nov 2014. http://www.karger.com/Article/FullText/369170
  585. Thomas F et al. Green tea extract (epigallocatechin-3-gallate) reduces efficacy of radiotherapy on prostate cancer cells. Urology. Aug 2011 . http://www.ncbi.nlm.nih.gov/pubmed/21676444
  586. Zhao H et al. A prospective phase II trial of EGCG in treatment of acute radiation-induced esophagitis for stage III lung cancer. Radiotherapy and Oncology. Mar 2015. https://www.ncbi.nlm.nih.gov/pubmed/25769379
  587. A phase I study of concurrent chemotherapy and thoracic radiotherapy with oral epigallocatechin-3-gallate protection in patients with locally advanced stage III non-small-cell lung cancer. Radiother Oncol. Jan 2014 . https://www.ncbi.nlm.nih.gov/pubmed/24444526
  588. Domingo DS et al. Anti-angiogenic effects of epigallocatechin-3-gallate in human skin. Int J Clin Exp Pathol. Aug 5, 2010 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933390/
  589. Zhao H et al. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br J Radiol. 2016. http://www.birpublications.org/doi/full/10.1259/bjr.20150665
  590. B Daniele et al. Oral glutamine in the prevention of fluorouracil induced intestinal toxicity: a double blind, placebo controlled, randomised trial. Gut. Jan 2001 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1728161/pdf/v048p00028.pdf
  591. Jolfaie NR et al. The effect of glutamine intake on complications of colorectal and colon cancer treatment: A systematic review. J Res Med Sci. Sep 2015 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4696378 .
  592. Fürst P, Albers S, Stehle P. Evidence for a nutritional need for glutamine in catabolic patients. Kidney Int Suppl. Nov 1989 . http://www.ncbi.nlm.nih.gov/pubmed/2517677
  593. Goldin E et al. Reduced glutamine content in colonic polyps. Scand J Gastroenterol. Apr 1996 . http://www.ncbi.nlm.nih.gov/pubmed/8726301
  594. Piccirillo N et al. Oral glutamine reduces the duration and severity of stomatitis after cytotoxic cancer chemotherapy. Haematologica. Feb 2003. http://www.haematologica.org/content/88/2/192.long
  595. Choi K et al. The effect of oral glutamine on 5-fluorouracil/leucovorin-induced mucositis/stomatitis assessed by intestinal permeability test. Clin Nutr. Feb 2007 . http://www.ncbi.nlm.nih.gov/pubmed/16949180
  596. Decker-Baumann C et al. Reduction of chemotherapy-induced side-effects by parenteral glutamine supplementation in patients with metastatic colorectal cancer. Eur J Cancer. Feb 1999 . http://www.ncbi.nlm.nih.gov/pubmed/10448260
  597. Stubblefield MD et al. Glutamine as a neuroprotective agent in high-dose paclitaxel-induced peripheral neuropathy: a clinical and electrophysiologic study. Clin Oncol (R Coll Radiol). Jun 2005 . http://www.ncbi.nlm.nih.gov/pubmed/15997923
  598. Amara S. Oral glutamine for the prevention of chemotherapy-induced peripheral neuropathy. Ann Pharmacother. Oct 2008 . http://www.ncbi.nlm.nih.gov/pubmed/18698011
  599. Sandini M et al. Effect of glutamine dipeptide supplementation on primary outcomes for elective major surgery: systematic review and meta-analysis. Nutrients. Jan 9, 2015 . http://www.ncbi.nlm.nih.gov/pubmed/25584966
  600. Yue C et al. The impact of perioperative glutamine-supplemented parenteral nutrition on outcomes of patients undergoing abdominal surgery: a meta-analysis of randomized clinical trials. Am Surg. May 2013 . http://www.ingentaconnect.com/content/sesc/tas/2013/00000079/00000005/art00027?token=00581d895e54f4e5858777B76504c48662a252e494a6c5f7372592c6a332b25757d5c4f6d4e227ad4b824035
  601. Aquino VM et al. A double-blind randomized placebo-controlled study of oral glutamine in the prevention of mucositis in children undergoing hematopoietic stem cell transplantation: a pediatric blood and marrow transplant consortium study. Bone Marrow Transplant. Oct 2005 . http://www.ncbi.nlm.nih.gov/pubmed/16086046
  602. Ward E et al. The effect of high-dose enteral glutamine on the incidence and severity of mucositis in paediatric oncology patients. Eur J Clin Nutr. Jan 2009 . http://www.nature.com/ejcn/journal/v63/n1/full/1602894a.html
  603. Uderzo C et al. Glutamine-enriched nutrition does not reduce mucosal morbidity or complications after stem-cell transplantation for childhood malignancies: a prospective randomized study. Transplantation. Jun 27, 2011. http://www.ncbi.nlm.nih.gov/pubmed/21499196
  604. Anderson PM, Schroeder G, Skubitz KM. Oral glutamine reduces the duration and severity of stomatitis after cytotoxic cancer chemotherapy. Cancer. Oct 1, 1998 . http://www.ncbi.nlm.nih.gov/pubmed/9762946
  605. Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid. Gen Pharmacol. Sep 1997 . https://www.ncbi.nlm.nih.gov/pubmed/937823
  606. Packer L, Tritschler HJ, Wessel K. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med. 1997. http://www.ncbi.nlm.nih.gov/pubmed/8958163
  607. D Ziegler et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care . Aug 1999 . http://care.diabetesjournals.org/content/22/8/1296.abstract?ijkey=227068bfbd83ddb549027dea0f0b12e1281bf13f&keytype2=tf_ipsecsh
  608. Dörsam B, Fahrer J. The disulfide compound α-lipoic acid and its derivatives: A novel class of anticancer agents targeting mitochondria. Cancer Lett. Feb 1, 2016 . http://www.ncbi.nlm.nih.gov/pubmed/26604131
  609. Jeon MJ et al. Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells. Mol Cell Endocrinol. Jan 5, 2016 . http://www.ncbi.nlm.nih.gov/pubmed/26463583
  610. Mantovani G et al. Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: assessment of the most important laboratory indexes of cachexia and oxidative stress. J Mol Med (Berl). Oct 2003 . http://link.springer.com/article/10.1007%2Fs00109-003-0476-1
  611. Wenzel U, Nickel A, Daniel H. alpha-Lipoic acid induces apoptosis in human colon cancer cells by increasing mitochondrial respiration with a concomitant O2-*-generation. Apoptosis.  Mar 2005 . http://link.springer.com/article/10.1007%2Fs10495-005-0810-x
  612. Mantovani G. Restoration of functional defects in peripheral blood mononuclear cells isolated from cancer patients by thiol antioxidants alpha-lipoic acid and N-acetyl cysteine. Int J Cancer. Jun 15, 2000 . www.ncbi.nlm.nih.gov/pubmed/10842199?dopt=Abstract
  613. Gedlicka C et al. Amelioration of docetaxel/cisplatin induced polyneuropathy by alpha-lipoic acid. . Ann Oncol. 2003. http://annonc.oxfordjournals.org/content/14/2/339.full.pdf+html
  614. Effective treatment of oxaliplatin-induced cumulative polyneuropathy with alpha-lipoic acid. J Clin Oncol. Aug 1, 2002 . http://jco.ascopubs.org/content/20/15/3359.long
  615. Brouwer CA et al. Long-term cardiac follow-up in survivors of a malignant bone tumour. Ann Oncol. 2006. http://annonc.oxfordjournals.org/content/early/2006/07/20/annonc.mdl156
  616. Al-Majed AA et al. Alpha-lipoic acid ameliorates myocardial toxicity induced by doxorubicin. Pharmacol Res. Dec 2002 . http://www.ncbi.nlm.nih.gov/pubmed/12457622
  617. Hussein A et al. Ameliorating effect of DL-α-lipoic acid against cisplatin-induced nephrotoxicity and cardiotoxicity in experimental animals. Drug Discov Ther. Jun 2012. http://www.ncbi.nlm.nih.gov/pubmed/22890205
  618. Malarkodi KP et al. Prophylactic effect of lipoic acid against adriamycin-induced peroxidative damages in rat kidney. Ren Fail. May 2003 . http://www.ncbi.nlm.nih.gov/pubmed/12803501
  619. Malarkodi KP, Balachandar AV, Varalakshmi P. Protective effect of lipoic acid on adriamycin induced lipid peroxidation in rat kidney. Mol Cell Biochem. May 2003 . http://www.ncbi.nlm.nih.gov/pubmed/12841625
  620. Ambalam P et al. Probiotics, prebiotics and colorectal cancer prevention. Best Pract Res Clin Gastroenterol. Feb 2016. http://www.bpgastro.com/article/S1521-6918(16)00013-5/fulltext
  621. Bultman SJ. The microbiome and its potential as a cancer preventive intervention. Semin Oncol. Feb 2016 . http://www.seminoncol.org/article/S0093-7754(15)00166-9/fulltext
  622. Yamamoto M, Matsumoto S. Gut microbiota and colorectal cancer. Genes Environ. Jun 1, 2016 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917993/
  623. Tao X, Wang N, Qin W. Gut Microbiota and Hepatocellular Carcinoma. Gastrointest Tumors. May 2015 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668791/
  624. Chase D et al. The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. Gynecol Oncol. Jul 2015 . http://www.ncbi.nlm.nih.gov/pubmed
  625. de Martel C, Franceschi S. Infections and cancer: established associations and new hypotheses. Crit Rev Oncol Hematol. Jun 2009 .  https://www.ncbi.nlm.nih.gov/pubmed/18805702/
  626. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. Nov 2013 .  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986062/
  627. Gagnière J et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. Jan 14, 2016 .  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4716055/
  628. Geier MS, Butler RN, Howarth GS. Probiotics, prebiotics and synbiotics: a role in chemoprevention for colorectal cancer? Cancer Biol Ther. Oct 2006 . http://www.ncbi.nlm.nih.gov/pubmed/16969130
  629. Richards JL et al. Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin Transl Immunology. May 13, 2016 .  https://www.ncbi.nlm.nih.gov/pubmed/27350881
  630. Mitra A et al. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next? Microbiome. Nov 1, 2016. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0203-0
  631. Verhoeven V et al. Probiotics enhance the clearance of human papillomavirus-related cervical lesions: a prospective controlled pilot study. Eur J Cancer Prev. Jan 2013 . https://www.ncbi.nlm.nih.gov/pubmed/22706167
  632. Yamamoto M, Matsumoto S. Gut microbiota and colorectal cancer. Genes Environ. Jun 1, 2016 .  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917993/
  633. Gao Z et al. Probiotics modify human intestinal mucosa-associated microbiota in patients with colorectal cancer. Mol Med Rep. Oct 2015 . https://www.spandidos-publications.com/mmr/12/4/6119
  634. Wang YH et al. The efficacy and safety of probiotics for prevention of chemoradiotherapy-induced diarrhea in people with abdominal and pelvic cancer: a systematic review and meta-analysis. Eur J Clin Nutr. Jun 22, 2016 . http://www.nature.com/ejcn/journal/vaop/ncurrent/full/ejcn2016102a.html
  635. Liang S et al. Effect of probiotics on small intestinal bacterial overgrowth in patients with gastric and colorectal cancer. Turk J Gastroenterol. May 2016 . http://www.turkjgastroenterol.org/sayilar/292/buyuk/227-232y.pdf
  636. Yu AQ, Li L . The Potential Role of Probiotics in Cancer Prevention and Treatment. Nutr Cancer. May-Jun 2016 . http://www.ncbi.nlm.nih.gov/pubmed/27144297
  637. Mego M et al. Prevention of irinotecan induced diarrhea by probiotics: A randomized double blind, placebo controlled pilot study. Complement Ther Med. Jun 2015 . http://www.ncbi.nlm.nih.gov/pubmed/26051570
  638. Demers M, Dagnault A, Desjardins J. A randomized double-blind controlled trial: impact of probiotics on diarrhea in patients treated with pelvic radiation. Clin Nutr. Oct 2014 . https://www.ncbi.nlm.nih.gov/pubmed/24200199
  639. Liu J, Huang XE. Efficacy of Bifidobacterium tetragenous viable bacteria tablets for cancer patients with functional constipation. Asian Pac J Cancer Prev. 2014. http://journal.waocp.org/article_30250_d288c3049ed68e81bcccb81027856e54.pdf
  640. Chitapanarux I et al. Randomized controlled trial of live lactobacillus acidophilus plus bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat Oncol. May 5, 2010 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874795/
  641. Kotzampassi K et al. A Four-Probiotics Regimen Reduces Postoperative Complications After Colorectal Surgery: A Randomized, Double-Blind, Placebo-Controlled Study. World J Surg. Nov 2015 . https://www.ncbi.nlm.nih.gov/pubmed/25894405
  642. Liu Z et al. Positive regulatory effects of perioperative probiotic treatment on postoperative liver complications after colorectal liver metastases surgery: a double-center and double-blind randomized clinical trial. BMC Gastroenterol. Mar 20, 2015 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374379/
  643. Zhang JW et al. Effect of viable Bifidobacterium supplement on the immune status and inflammatory response in patients undergoing resection for colorectal cancer. Zhonghua Wei Chang Wai Ke Za Zhi. Jan 2010. https://www.ncbi.nlm.nih.gov/pubmed/20099160
  644. Krebs B. Prebiotic and Synbiotic Treatment before Colorectal Surgery--Randomised Double Blind Trial. Coll Antropol. Apr 2016. http://www.ncbi.nlm.nih.gov/pubmed/27301235
  645. Shunichiro Komatsu et al. Efficacy of perioperative synbiotics treatment for the prevention of surgical site infection after laparoscopic colorectal surgery: a randomized controlled trial. Surgery Today. April 2016. http://link.springer.com/article/10.1007/s00595-015-1178-3
  646. Wada M et al. Effects of the enteral administration of Bifidobacterium breve on patients undergoing chemotherapy for pediatric malignancies. Support Care Cancer. Jun 2010 . https://www.ncbi.nlm.nih.gov/pubmed/19685085
  647. Viaud S et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. Nov 22, 2013 .  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048947/
  648. Saulnier DM et al. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes. Jan 1, 2013 .  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3555881/
  649. Sarkar A et al. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci. Oct 13, 2016 .  https://www.ncbi.nlm.nih.gov/pubmed/27793434
  650. Dinan TG et al. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. Nov 15, 2013 .  http://www.ncbi.nlm.nih.gov/pubmed/23759244
  651. Pirbaglou M et al. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr Res. Sep 2016 . https://www.ncbi.nlm.nih.gov/pubmed/27632908
  652. Kvasnovsky CL, Bjarnason I,Papagrigoriadis S. What colorectal surgeons should know about probiotics: a review. Colorectal Disease. October 2015. http://onlinelibrary.wiley.com/doi/10.1111/codi.13046/full
  653. De Groote MA et al. Lactobacillus rhamnosus GG bacteremia associated with probiotic use in a child with short gut syndrome. Pediatr Infect Dis J. Mar 2005 . http://www.ncbi.nlm.nih.gov/pubmed/15750472
  654. Kunz AN, Noel JM, Fairchok MP. Two cases of Lactobacillus bacteremia during probiotic treatment of short gut syndrome. J Pediatr Gastroenterol Nutr. Apr 2004 . http://www.ncbi.nlm.nih.gov/pubmed/15085028
  655. Ledoux D, Labombardi VJ, Karter D. Lactobacillus acidophilus bacteraemia after use of a probiotic in a patient with AIDS and Hodgkin's disease. Int J STD AIDS. Apr 2006 . http://www.ncbi.nlm.nih.gov/pubmed/16595054
  656. Chiara Tommasi et al. Diagnostic difficulties of Lactobacillus casei bacteraemia in immunocompetent patients: A case report. BioMed Central. Jan 17 , 2008. https://jmedicalcasereports.biomedcentral.com/articles/10.1186/1752-1947-2-315
  657. Vahabnezhad E et al. Lactobacillus bacteremia associated with probiotic use in a pediatric patient with ulcerative colitis. J Clin Gastroenterol. May-Jun 2013 . http://www.ncbi.nlm.nih.gov/pubmed/23426446
  658. Oggioni MR, Pozzi G, Valensin PE. Recurrent Septicemia in an Immunocompromised Patient Due to Probiotic Strains of Bacillus subtilis. J Clin Microbiol. Jan 1998 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC124869/
  659. Garrido-Maraver J et al. Coenzyme q10 therapy. Mol Syndromol. Jul 2014 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112525/
  660. Lockwood K, Moesgaard S, Folkers K. Partial and complete regression of breast cancer in patients in relation to dosage of coenzyme Q10. Biochem Biophys Res Commun. Mar 30, 1994 . http://www.ncbi.nlm.nih.gov/pubmed/7908519
  661. Hayek ER, Speakman E, Rehmus E. Acute Doxorubicin Cardiotoxicity. N Engl J Med. Jun 5, 2005. http://www.nejm.org/doi/full/10.1056/NEJM200506093522321
  662. Domae N et al. Cardiomyopathy and other chronic toxic effects induced in rabbits by doxorubicin and possible prevention by coenzyme Q10. Cancer Treat Rep. Jan-Feb 1981. http://www.ncbi.nlm.nih.gov/pubmed/7226168
  663. Kishi T, Watanabe T, Folkers K. Bioenergetics in clinical medicine: prevention by forms of coenzyme Q of the inhibition by adriamycin of coenzyme Q10-enzymes in mitochondria of the myocardium. Proc Natl Acad Sci U S A. Dec 1976 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC431583/
  664. Conklin KA. Coenzyme q10 for prevention of anthracycline-induced cardiotoxicity. Integr Cancer Ther. Jun 2005. http://ict.sagepub.com/content/4/2/110.long
  665. Lesser GJ et al. A randomized, double-blind, placebo-controlled study of oral coenzyme Q10 to relieve self-reported treatment-related fatigue in newly diagnosed patients with breast cancer. J Support Oncol. Mar 2013 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501550/
  666. Premkumar VG et al. Anti-angiogenic potential of CoenzymeQ10, riboflavin and niacin in breast cancer patients undergoing tamoxifen therapy. Vascul Pharmacol. Apr-Jun 2008 . http://www.ncbi.nlm.nih.gov/pubmed/18407793
  667. Effect of coenzyme Q10, riboflavin and niacin on serum CEA and CA 15-3 levels in breast cancer patients undergoing tamoxifen therapy. Biol Pharm Bull. Feb 2007 . https://www.jstage.jst.go.jp/article/bpb/30/2/30_2_367/_pdf
  668. Rosenkranz MA et al. Reduced stress and inflammatory responsiveness in experienced meditators compared to a matched healthy control group. Psychoneuroendocrinology. Jun 2016 . http://www.ncbi.nlm.nih.gov/pubmed/26970711
  669. Gallegos AM et al. Mindfulness-based stress reduction to enhance psychological functioning and improve inflammatory biomarkers in trauma-exposed women: A pilot study. Psychol Trauma. Nov 2015. http://www.ncbi.nlm.nih.gov/pubmed/25915646
  670. Brown KW, Weinstein N, Creswell JD. Trait mindfulness modulates neuroendocrine and affective responses to social evaluative threat. Psychoneuroendocrinology. Dec 2012. http://www.ncbi.nlm.nih.gov/pubmed/22626868
  671. Bower JE et al. Yoga reduces inflammatory signaling in fatigued breast cancer survivors: a randomized controlled trial. Psychoneuroendocrinology. May 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060606/
  672. Nidhi R et al. Effect of a yoga program on glucose metabolism and blood lipid levels in adolescent girls with polycystic ovary syndrome. Int J Gynaecol Obstet. Jul 2012. http://www.ncbi.nlm.nih.gov/pubmed/22507264
  673. Koike MK, Cardoso R. Meditation can produce beneficial effects to prevent cardiovascular disease. Horm Mol Biol Clin Investig. Jun 2014 . http://www.ncbi.nlm.nih.gov/pubmed/25390009
  674. Rosenzweig S et al. Mindfulness-based stress reduction is associated with improved glycemic control in type 2 diabetes mellitus: a pilot study. Altern Ther Health Med. Sep-Oct 2007 . http://www.ncbi.nlm.nih.gov/pubmed/1790004
  675. Raja-Khan N et al. Mindfulness-Based Stress Reduction for Overweight/Obese Women With and Without Polycystic Ovary Syndrome: Design and Methods of a Pilot Randomized Controlled Trial. Contemp Clin Trials. Mar 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380576/
  676. Wilson T et al. Relaxation breathing improves human glycemic response. J Altern Complement Med. Jul 2013 . http://www.ncbi.nlm.nih.gov/pubmed/23360657
  677. Sadja J, Mills PJ. Effects of yoga interventions on fatigue in cancer patients and survivors: a systematic review of randomized controlled trials. Explore (NY). Jul-Aug 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781173/
  678. Andersen SR et al. Effect of mindfulness-based stress reduction on sleep quality: results of a randomized trial among Danish breast cancer patients. Acta Oncol. Feb 2013 . http://www.ncbi.nlm.nih.gov/pubmed/23282113
  679. Lengacher CA et al. The effects of mindfulness-based stress reduction on objective and subjective sleep parameters in women with breast cancer: a randomized controlled trial. Psychooncology. Apr 2015 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487655/
  680. Neuendorf R et al. The Effects of Mind-Body Interventions on Sleep Quality: A Systematic Review. Evid Based Complement Alternat Med. Jun 16, 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487927/
  681. Sun J, Buys N. Community-Based Mind-Body Meditative Tai Chi Program and Its Effects on Improvement of Blood Pressure, Weight, Renal Function, Serum Lipoprotein, and Quality of Life in Chinese Adults With Hypertension. Am J Cardiol. Oct 1, 2015. http://www.ncbi.nlm.nih.gov/pubmed/26251005
  682. Hagins M et al. Effectiveness of yoga for hypertension: systematic review and meta-analysis. Evid Based Complement Alternat Med. May 28, 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679769/
  683. Manchanda SC, Madan K. Yoga and meditation in cardiovascular disease. Clin Res Cardiol. Sep 2014 . http://www.ncbi.nlm.nih.gov/pubmed/24464106
  684. Krizanova O, Babula P, Pacak K. Stress, catecholaminergic system and cancer. Stress. Jul 2016. http://www.tandfonline.com/doi/full/10.1080/10253890.2016.1203415
  685. Nezi M, Mastorakos G, Mouslech Z. Corticotropin Releasing Hormone And The Immune/Inflammatory Response. MDText.com, Inc. July 30, 2015. http://www.ncbi.nlm.nih.gov/books/NBK279017/
  686. Antonova L, Aronson K, Mueller CR. Stress and breast cancer: from epidemiology to molecular biology. Breast Cancer Res. Apr 21, 2011 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3219182/
  687. Segerstrom SC, Miller GE. Psychological Stress and the Human Immune System: A Meta-Analytic Study of 30 Years of Inquiry. Psychol Bull. Jul 2004 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361287/
  688. Rosenkranz MA et al. A comparison of mindfulness-based stress reduction and an active control in modulation of neurogenic inflammation. Brain Behav Immun. Jan 2013 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518553/
  689. Weigensberg MJ et al. Acute Effects of Stress-Reduction Interactive Guided ImagerySM on Salivary Cortisol in Overweight Latino Adolescents. J Altern Complement Med. Mar 2009 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838612/
  690. Jones D et al. The Effect of Relaxation Interventions on Cortisol Levels in HIV-Sero-Positive Women. J Int Assoc Provid AIDS Care. Jul-Aug 2014 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731219/
  691. Cohen L et al. Presurgical stress management improves postoperative immune function in men with prostate cancer undergoing radical prostatectomy. Psychosom Med. Apr 2011 . http://www.ncbi.nlm.nih.gov/pubmed/21257977
  692. Eremin O et al. Immuno-modulatory effects of relaxation training and guided imagery in women with locally advanced breast cancer undergoing multimodality therapy: a randomised controlled trial. Breast. Feb 2009 . http://www.thebreastonline.com/article/S0960-9776(08)00185-9/abstract
  693. Lengacher CA et al. Immune responses to guided imagery during breast cancer treatment. Biol Res Nurs. Jan 2008 . http://www.ncbi.nlm.nih.gov/pubmed/18077773
  694. Andersen BL et al. Psychologic intervention improves survival for breast cancer patients: a randomized clinical trial. Cancer. Dec 15, 2008 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661422/
  695. Ledesma D, Kumano H. Mindfulness-based stress reduction and cancer: a meta-analysis. . Psycho-Oncology. November 20 , 2009. http://www.ncbi.nlm.nih.gov/pubmed/19023879
  696. Musial F et al. Mindfulness-based stress reduction for integrative cancer care: a summary of evidence. Forsch Komplementmed. Aug 8, 2011. http://www.karger.com/Article/Pdf/330714
  697. Zhang MF et al. Effectiveness of Mindfulness-based Therapy for Reducing Anxiety and Depression in Patients With Cancer: A Meta-analysis. Medicine (Baltimore). Nov 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912240/
  698. Deng GE et al. Complementary therapies and integrative medicine in lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. May 2013. http://journal.publications.chestnet.org/article.aspx?articleid=1685298
  699. Kwekkeboom KL et al. Mind-body treatments for the pain-fatigue-sleep disturbance symptom cluster in persons with cancer. J Pain Symptom Manage. Jan 2010. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084527/
  700. Lengacher CA et al. Randomized controlled trial of mindfulness-based stress reduction (MBSR) for survivors of breast cancer. Psychooncology. Dec 2009. http://www.ncbi.nlm.nih.gov/pubmed/19235193
  701. León-Pizarro C et al. A randomized trial of the effect of training in relaxation and guided imagery techniques in improving psychological and quality-of-life indices for gynecologic and breast brachytherapy patients. Psychooncology. Nov 2007. http://www.ncbi.nlm.nih.gov/pubmed/17311247
  702. Charalambous A et al. Guided Imagery And Progressive Muscle Relaxation as a Cluster of Symptoms Management Intervention in Patients Receiving Chemotherapy: A Randomized Control Trial. PLoS One. Jun 24, 2016 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920431/
  703. Kwekkeboom KL, Wanta B, Bumpus M. Individual Difference Variables and the Effects of Progressive Muscle Relaxation and Analgesic Imagery Interventions on Cancer Pain. J Pain Symptom Manage. May 27, 2008. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638086/
  704. Key TJ et al. The effect of diet on risk of cancer. Lancet. Sep. 2002. http://www.sciencedirect.com/science/article/pii/S0140673602099580
  705. Hui Zeng et al. Experimental Comparison of the Reproductive Outcomes and Early Development of the Offspring of Rats Given Five Common Types of Drinking Water. PLoS One. Oct 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184831/
  706. Charles M. Benbrook et al. Organic Production Enhances Milk Nutritional Quality by Shifting Fatty Acid Composition: A United States–Wide, 18-Month Study. PLoS One. Dec 9, 2013. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857247/
  707. Hughes DJ at al. Prediagnostic selenium status and hepatobiliary cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr. Jun 29, 2016. http://www.ncbi.nlm.nih.gov/pubmed/27357089
  708. Yang G et al. Studies of safe maximal daily dietary Se-intake in a seleniferous area in China. Part II: Relation between Se-intake and the manifestation of clinical signs and certain biochemical alterations in blood and urine. J Trace Elem Electrolytes Health Dis. Sep 1989 . http://www.ncbi.nlm.nih.gov/pubmed/2535331?dopt=Abstract
  709. Makiuchi T. et al. Association between green tea/coffee consumption and biliary tract cancer: A population‐based cohort study in Japan. Cancer Sci. Jan 2016 . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724819/
  710. Zhang X, Yang Y, Wang Q. Lycopene can reduce prostate-specific antigen velocity in a phase II clinical study in Chinese population. Chin Med J (Engl). 2014. http://124.205.33.103:81/ch/reader/view_abstract.aspx?file_no=20132829&flag=1
  711. Chen P et al. Lycopene and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Medicine (Baltimore). Aug 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4616444/
  712. Kucuk O et al. Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol Med (Maywood). Nov 2002. http://ebm.sagepub.com/content/227/10/881.long
  713. Zhang W et al. Curcumin is a biologically active copper chelator with antitumor activity. Phytomedicine. Jan 15, 2016 . http://www.ncbi.nlm.nih.gov/pubmed/26902401
  714. Sahebjamee M et al. Comparative Efficacy of Aloe vera and Benzydamine Mouthwashes on Radiation-induced Oral Mucositis: A Triple-blind, Randomised, Controlled Clinical Trial. Oral Health Prev Dent. Sep 1, 2015. http://www.ncbi.nlm.nih.gov/pubmed/25431805
  715. Su CK et al. Phase II double-blind randomized study comparing oral Aloe vera versus placebo to prevent radiation-related mucositis in patients with head-and-neck neoplasms. Int J Radiat Oncol Biol Phys. Sep 1, 2004. http://www.ncbi.nlm.nih.gov/pubmed/15337553
  716. Heggie S et al. A Phase III study on the efficacy of topical Aloe vera gel on irradiated breast tissue. Cancer Nurs. Dec 2002. http://www.ncbi.nlm.nih.gov/pubmed/12464836
  717. Williams MS et al. Phase III double-blind evaluation of an Aloe vera gel as a prophylactic agent for radiation-induced skin toxicity. Int J Radiat Oncol Biol Phys. Sep 1, 1996. http://www.ncbi.nlm.nih.gov/pubmed/8892458
  718. Hoopfer D et al. Three-Arm Randomized Phase III Trial: Quality Aloe and Placebo Cream Versus Powder as Skin Treatment During Breast Cancer Radiation Therapy. Clin Breast Cancer. Jun 2015 . http://www.ncbi.nlm.nih.gov/pubmed/25619686
  719. Bradt J et al. Music interventions for improving psychological and physical outcomes in cancer patients. Cochrane Database Syst Rev. Aug 10, 2011 . http://www.ncbi.nlm.nih.gov/pubmed/21833957
  720. Aksoy M et al. . Thiamin status of patients treated with drug combinations containing 5-fluorouracil. Eur J Cancer . 1980. https://www.ncbi.nlm.nih.gov/pubmed/7439220
  721. Pinto J et al. Disturbances in the formation of FAD and covalently bound flavins in Novikoff hepatoma from riboflavin-deficient rats. Nutr Cancer. 1987. http://www.tandfonline.com/doi/abs/10.1080/01635588709513944
  722. Ramu A et al. . The enhancement of riboflavin-mediated photo-oxidation of doxorubicin by histidine and urocanic acid. . Cancer Chemother Pharmacol . 2001. https://www.ncbi.nlm.nih.gov/pubmed/11345651
  723. Stargrove MB, Treasure J, McKee DL,. Herb, Nutrient, and Drug Interactions 2008. pp. pp 267-305.
  724. 722. Agote M et al. Influence of nicotinamide on the radiosensitivity of normal and goitrous thyroid in the rat. Thyroid . Nov 2001. https://www.ncbi.nlm.nih.gov/pubmed/11762708 
  725. Wang X., Sun W., Cao J., Qu H., Bi X., and Zhao Y. Structures of new triterpenoids and cytotoxicity activities of the isolated major compounds from the fruit of Momordica charantia L. J. Agric. Food Chem. 2012; 60: pp. 3927-393.
  726. Takemoto, D. J., Dunford, C., and McMurray, M.M. The cytotoxic and cytostatic effects of the bitter melon (Momordica charantia) on human lymphocytes. Toxicon 1982;20(3):593-599
  727. Matsuda H, Tong CN, Kubo M. Yakugaku Zasshi. Pharmacological study on Panax ginseng C. A. Meyer. XIV. Effect of 70% methanolic extract from red ginseng on the cytocidal effect of mitomycin c against rat ascites hepatoma AH 130. 1992 Nov;112(11):846-55.
  728. Tong CN, Matsuda H, Kubo M. Yakugaku Zasshi. Pharmacological study on Panax ginseng C. A. Meyer. XV. Effects of 70% methanolic extract from red and white ginseng on the antitumor activity of mitomycin C. 1992 Nov;112(11):856-65.
  729. Leclere L et al. Identification of a cytotoxic molecule in heat-modified citrus pectin. Carbohydr Polym. Feb 2016. https://www.ncbi.nlm.nih.gov/pubmed/26686103
  730. Hsieh TC, Wu JM. Changes in cell growth, cyclin/kinase, endogenous phosphoproteins and nm23 gene expression in human prostatic JCA-1 cells treated with modified citrus pectin. Biochem Mol Biol Int. Nov 1995. https://www.ncbi.nlm.nih.gov/pubmed/8624488
  731. Hossein G et al. Synergistic effects of PectaSol-C modified citrus pectin an inhibitor of Galectin-3 and paclitaxel on apoptosis of human SKOV-3 ovarian cancer cells. Asian Pac J Cancer Prev. 2013. https://www.ncbi.nlm.nih.gov/pubmed/24460334
  732. Ramachandran C et al. Activation of human T-helper/inducer cell, T-cytotoxic cell, B-cell, and natural killer (NK)-cells and induction of natural killer cell activity against K562 chronic myeloid leukemia cells with modified citrus pectin. BMC Complement Altern Med. Aug 2011. https://www.ncbi.nlm.nih.gov/pubmed/21816083
  733. Wang S et al. Chemoprevention of Low-Molecular-Weight Citrus Pectin (LCP) in Gastrointestinal Cancer Cells. Int J Biol Sci. Apr 2016. https://www.ncbi.nlm.nih.gov/pubmed/27194951
  734. Chauhan D et al. A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Res. Sep 2005. https://www.ncbi.nlm.nih.gov/pubmed/16166312
  735. Pienta KJ et al. Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. J Natl Cancer Inst. 1995. https://www.ncbi.nlm.nih.gov/pubmed/7853416 
  736. Odun-Ayo F et al. Chemoprevention of Azoxymethane-induced Colonic Carcinogenesis in Balb/c mice Using a Modified Pectin Alginate Probiotic. Anticancer Res. Sep 2015. https://www.ncbi.nlm.nih.gov/pubmed/26254367
  737. Nangia-Makker P et al. Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst. Dec 2002. https://www.ncbi.nlm.nih.gov/pubmed/12488479
  738. Menachem A. Inhibition of malignant thyroid carcinoma cell proliferation by Ras and galectin-3 inhibitors. Cell Death Discov. Nov 2015. https://www.ncbi.nlm.nih.gov/pubmed/27551476 
  739. Pienta KJ et al. Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. J Natl Cancer Inst. Mar 1, 1995 . https://www.ncbi.nlm.nih.gov/pubmed/7853416 
  740. Glinsky VV, Raz A. Modified citrus pectin anti-metastatic properties: one bullet, multiple targets. Carbohydr Res. Sep 28, 2009. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782490/ 
  741. Ahmed H, AlSadek DM. Galectin-3 as a Potential Target to Prevent Cancer Metastasis. Clin Med Insights Oncol. Nov 2015. https://www.ncbi.nlm.nih.gov/pubmed/26640395 
  742. Van den Brûle FA et al. Alteration of the cytoplasmic/nuclear expression pattern of galectin-3 correlates with prostate carcinoma progression. Int J Cancer. Jul 20, 2000. https://www.ncbi.nlm.nih.gov/pubmed/10956411/ 
  743. Guess BW et al. Modified citrus pectin (MCP) increases the prostate-specific antigen doubling time in men with prostate cancer: a phase II pilot study. Prostate Cancer Prostatic Dis. Jul 2003. https://www.ncbi.nlm.nih.gov/pubmed/14663471