עם ישראל חי!
פתיחת תפריט נגישות
חזרה לראש הדף
גישה מהירה לדף הבית

ויטמין C

עודכן בתאריך 10/08/2025

 

כללי  | מקורות |  תפקידים | תכונות | ספיגה והפרשה | סוגי תוספים | גורמים לחוסר | תסמיני חוסר | עודף | RDA | מינונים | אינטראקציות | התוויות נגד |  מחקרים | מקורות

 

 

כללי

ויטמין C הינו ויטמין מסיס במים אשר יש לצרוך אותו במזון או כתוסף שכן הגוף אינו יודע לייצרו. הויטמין משתתף בלמעלה מ- 300 תהליכים ביולוגיים שונים והינו בעל פעילות נוגדת חמצון חזקה המגנה על הגוף בפני רדיקלים חופשיים.

נוכחות הויטמין ברקמות הגוף השונות חיונית לבריאות רקמות החיבור בגוף, לחיזוק פעילות מערכת החיסון, להורדת רמות כולסטרול בדם, לויסות פעילות הורמונלית, לייצור מעבירים עצביים ועוד.

כמויות הויטמין הנדרשות לגוף אינן גדולות אך בשל השתתפותו בתהליכים רבים הינו בעל חשיבות רבה ויש לצרוך כמויות קטנות שלו באופן יומיומי. חוסר בויטמין C שכיח בעיקר אצל אנשים אשר לא צורכים כמויות נאותות של פירות וירקות ועשוי לגרום לתופעות לוואי שונות. מקרי חוסר חמורים של ויטמין C מזוהים עם מחלת צפדינה, מחלה המתבטאת בתופעות עוריות שונות, דימומים תת עוריים, אובדן שיניים, דלקות חניכיים ועוד.

עודף בויטמין הינו נדיר אך עלול להיגרם עקב צריכת כמויות מוגברות של הויטמין ולהתבטא בתסמיני רעילות בעיקר במערכת העיכול. 


מקורות תזונתיים לויטמין C:

ויטמין C מצוי בירקות ופירות טריים כאשר כמויות הויטמין תלויות בזמן ההבשלה, תנאי הגידול, ההובלה והאחסון. כמויות גבוהות של הויטמין מצויות בפירות וירקות כגון בפלפלים, פירות הדר, כרובית, כרוב, ברוקולי, תרד, תות שדה, בננה, תפוח- אדמה, קיווי, דובדבנים, עגבניות, גויאבה ועוד.
 

תפקידו של ויטמין C:

  • משתתף בכ- 300 תהליכים ביולוגיים שונים בגוף.
  • משתתף בתהליכי חמצון חיזור ומשמש כנוֹגד חִמצון חזק המגן על תאי הגוף בפני רדיקלים חופשיים.
  • חיוני לחיזוק הפעילות ולתפקוד תקין של מערכת החיסון (מגביר פעילות וייצור של נוגדנים ותאים במערכת החיסון כגון מאקרופאג'ים ולימפוציטים) ומסייע בהגנה על הגוף בפני מזהמים חיצוניים.
  • חיוני לבריאות ושלמות של רקמות חיבור (עור, שרירים, עצמות, גידים). ויטמין C חיוני לייצור קולגן. הויטמין מעניק אלקטרונים לאנזימים המשתתפים בתהליך הייצור של קולגן המשמש כחלבון עיקרי במבנה רקמות החיבור בגוף.
  • תפקידים נוספים פתוחים למנויים בלבד.

 

תכונות נוספות של ויטמין C:

 

ספיגה והפרשה של ויטמין C:

ויטמין C אינו נאגר בכמויות גדולות בגוף ולכן יש לצרוך אותו באופן יומיומי. הויטמין נספג בקלות לכל אורך המעי הדק בספיגה פעילה באמצעות נשאים ובספיגה סבילה באמצעות דיפוזיה פשוטה (פעפוע). תהליך הספיגה הפעיל נעשה באמצעות שני סוגי נשאים:SVCT (Sodium-ascorbat co-transporter) ו-GLUT (Glucose transporter) כאשר לכל אחד מהם שני תתי סוגים: SVCT1, SVCT2, GLUT1 ו- GLUT2. הקבוצה הראשונה (SVCT) נושאת את הצורה הפעילה של הויטמין (חומצה אסקורבית) הנמצאת בצורה מחוזרת. הקבוצה השנייה (GLUT) משמשת כנשאית של גלוקוז ושל הצורה הלא פעילה של הויטמין (Dehydroascorbic acid) בצורתו המחומצנת. הצורה הלא פעילה של הויטמין מועברת לתוך התאים בשיעור גבוה יותר מן הצורה הפעילה אך נמצאת ברקמות הגוף בשיעור נמוך שכן בתוך התאים היא עוברת תהליך חיזור ומומרת לצורה הפעילה של הויטמין.
אחוזי הספיגה של הויטמין המגיע ממזון או מתוסף תזונה מווסתים על ידי הכליות ותלויים בכמות הנצרכת; צריכה של עד 400 מ"ג ביום תביא לספיגה של כ-70-95% של הויטמין אולם צריכה מוגברת (מעל 1 גרם) תוריד את שיעור הספיגה עד לכדי 50%.
לאחר ספיגתו במעי מועבר הויטמין
למידע השלם למנויים


סוגים של תוספי ויטמין C

ויטמין C (L-ascorbic acid) בין שמקורו במזון וברכיבים צמחיים טבעיים ובין שמקורו בתוספים סינתטיים זהה מבחינה כימית. על פי סקירה(427) ומחקר קליני(428) לא נמצאה עדות לשוני משמעותי ביניהם בזמינות הביולוגית או ביעילות ההשפעה.
יתרה מזאת, על פי סקירה(425) שכללה עשרה מחקרים קליניים, מרבית המחקרים לא מצאו יתרון בזמינות הביולוגית בין תוספים המשלבים ויטמין C עם תרכובות ביופלבונואידיות בהשוואה לויטמין C לבדו.

 

בשוק תוספי התזונה ניתן למצוא ויטמין C בצורות שונות, כגון:


ויטמין C ליפוזומלי - ליפוזומים הם בועיות מיקרוסקופיות עגולות עם חלל במרכזן אשר מיוצרות בטכנולוגיית ננו(429). המעטפת של הבועיות מורכבת מפוספוליפידים – אותם רכיבים טבעיים שמרכיבים את כל קרומי התאים של היצורים החיים. הטכנולוגיה הליפוזומלית מאפשרת לעשות שימוש בליפוזומים כנשאים של רכיבי תזונה (ויטמינים, מינרלים, חומצות שומן חיוניות, רכיבים צמחיים ועוד), באופן שיאפשר להוביל את רכיבי התזונה לאורך מערכת העיכול, עד לספיגתם – וזאת מבלי שהספיגה תהיה תלויה בזמינות של החלבונים הנשאים(430). כלומר הליפוזומים משמשים כנשאים בפני עצמם, ובכך מספקים אלטרנטיבה להגדלת יכולת הספיגה של נוטריינטים כגון ויטמין C ממערכת העיכול אל הדם(431).

 

שיפור הספיגה של ויטמין C באמצעות טכנולוגיה ליפוזומלית 
כאמור, רמת ויטמין C ברקמות ובתאים תלויה בספיגה שלו ממערכת העיכול, אך כמות הוויטמין אותה הנשאים יכולים להעביר בכל רגע נתון ממערכת העיכול אל הדם היא מוגבלת. 
סקירה(426) מדווחת כי על פי מחקרים(432-433) שנערכו בנושא ספיגת ויטמין C ככל שמינון הוויטמין למידע השלם למנויים

 

ויטמין C מינרלי – זוהי צורה לא חומצית של הויטמין בה המולקולה קשורה למינרל מסוים (כגון סידן, נתרן, מגנזיום, אבץ, אשלגן, מוליבדנום, כרום, מנגן) ולא למימן אשר מקנה לה חומציות. הניסיון הקליני מלמד שויטמין C מינרלי מונע חומציות יתר בקיבה ואת תופעות הלוואי הנלוות לכך כגון כאבי בטן ושלשולים, אך אין לכך תמיכה מחקרית. בעת הנטילה הן ויטמין C והן המינרל נספגים היטב, ולכן מומלץ להחשיב את מינון המינרל בתוסף, בייחוד בעת נטילת התוסף במינון גבוה, וכן להתחשב בפעילותו הרפואית. 

 

אסטר ® C – תוסף המבוסס ברובו על סידן אסקורבאט, מלח סידן של חומצה אסקורבית (ויטמין C שאינו חומצי), אך הוא מכיל בנוסף גם אחוז קטן של הצורה המחומצנת של הויטמין (dehydroascorbic acid), וכמויות קטנות של המטבוליטים threonate ,xylonate ו-lyxonate האמורים לכאורה להגביר את ספיגת הוויטמין במעי. עם זאת, במחקר פיילוט קטן (בהשתתפות 8 נשים וגבר אחד)(438) לא נמצא כל הבדל בין נטילת אסטר C לבין נטילת טבליות חומצה אסקורבית ביחס לספיגה של ויטמין C ממערכת העיכול ולהפרשתו בשתן. 

 

אסקורביל פאלמיטט – אסטר של נגזרת של ויטמין C עם חומצת שומן רוויה, חומצה פלמיטית. צורה זו של ויטמין C היא בעלת מסיסות אמפיפטית (בשמן ובמים), ומשמשת כנוגד חמצון בתעשיית המזון והקוסמטיקה. מחקרי מעבדה(439-440) הראו כי המסיסות הדואלית מאפשרת למולקולה לחדור את מעטפת התאים ולהקנות הגנה נוגדת חמצון. אולם בגוף האדם, רוב המולוקולה עוברת פירוק במערכת העיכול עוד לפני הספיגה בתאים, ולחומצה האסקורבית שמשתחררת יש זמינות ביולוגית המשתווה לזו של כלל המולקולות מסוג חומצה אסקורבית, ללא יתרון מובהק כלשהו(441). בשימוש חיצוני משמש אסקורביל פאלמיטט לטיפול מקומי במפגעי עור על ידי הגברת סינתזת קולאגן, הודות ליציבותו היחסית בתמיסה(442).
 

גורמים לחוסר בויטמין C:

  • תזונה דלה בויטמין – תזונה דלה בויטמין C שכיחה אצל אנשים אשר צורכים כמויות מועטות של פירות וירקות או כאשר הפירות והירקות אינם טריים או מבושלים בטמפרטורות גבוהות ולזמן ממושך. כמו כן, חוסר בויטמין עלול להיווצר אצל אנשים אשר ניזונים בעיקר ממזונות מעובדים ומשוּמרים בהם נהרס הויטמין.
  • מתח ולחץ – למידע השלם למנויים
  • טראומות – למידע השלם למנויים
  • גיל מבוגר – למידע השלם למנויים
  • עישון וחשיפה לזיהום סביבתי (פחמן חד חמצני) – למידע השלם למנויים

 

הפרעות ותסמינים הנגרמים עקב חוסר בויטמין C:

חוסר של ויטמין C מתבטא בחולשה של מערכת החיסון ובנטייה לזיהומים. שאר התסמינים נובעים כתוצאה מפגיעה בייצור למידע השלם למנויים

 

עודף של ויטמין C (רעילות):

עודף של ויטמין C הינו נדיר שכן הגוף אינו מאחסן את הויטמין, כמותו בגוף מווסתת על ידי הכליות ועודפיו מופרשים בקלות בשתן. עם זאת, צריכה מוגברת הגבוהה מ- 2000 מ"ג ביום עלולה לגרום לרעילות ולתופעות כגון שלשולים, בחילות, למידע השלם למנויים

מינון יומי מומלץ של ויטמין C לפי ה-(RECOMMENDED DAILY ALLOWANCE) RDA:

  • מלידה ועד גיל 6 חודשים – 40 מ"ג.
  • מגיל 6 חודשים ועד שנה – 50 מ"ג.
  • גילאים 1-3 שנים – 15 מ"ג.
  • גילאים 4-8 שנים – 25 מ"ג.
  • גילאים 9-13 שנים – 45 מ"ג.
  • גברים בגילאי 14-18 שנים – 75 מ"ג.
  • גברים בגילאי 19 ומעלה – 90 מ"ג.
  • נשים בגילאי 14-18 שנים – 65 מ"ג.
  • נשים בגילאי 19 ומעלה – 90 מ"ג.
  • נשים בהריון – 80-85 מ"ג.
  • נשים מניקות – 115-120 מ"ג.  

טווח מינון לטיפול בחוסר ויטמין C:

הדעות לגבי המינונים הטיפוליים והיעילות של ויטמין C חלוקות. עם זאת להלן מספר דוגמאות:

 

כיום קיימים תוספי תזונה של ויטמין C מסוג אסטר.

תוספים אלו מכילים חומצת שומן אשר מעלה את הזמינות הביולוגית של חומצה אסקורבית ומסייע לה לחדור בצורה קלה יותר אל התאים.

 

תרופות למחלת הסרְטן

Cisplatin | Carboplatin | Oxaliplatin | Paclitaxel | Docetaxel | Doxorubicin  | Gemcitabine | Topotecan | Fluorouracil (5-FU) | Tamoxifen | Vincristine (Oncovin) | Vinblastine | Leucovorin | Erlotinib | Asparaginase | Procarbazine | Cyclophosphamide | Rituximab | Bevacizumab | Trastuzumab | Etoposide | Bleomycin |  Imatinib | Epirubicin | Aclarubicin | Cytarabine | Decitabine | Capecitabine | Methotrexate | Cetuximab | Temozolomide | Everolimus, Barasertib, Lonafarnib | MG-132 | Bortezomib | Melphalan | Lomustine, ABT-737, MLN-2238, Palbociclib, PI-103, BEZ-235 | Carfilzomib | רדיותרפיה

 

המידע על האינטראקציות זמין למנויי האתר בלבד. לרכישת מנוי לחצו כאן.

 

התוויות נגד לשימוש ב ויטמין C:

 

מחקרים על ויטמין C:

בחלק זה תמצאו סקירות מחקרים על ויטמין C למידע השלם למנויים

 

 

מקורות

  1. Pirat B, Korkmaz ME, Eroğlu S, et al. The effects of simvastatin combined with different antioxidant vitamin regimens on serum lipid profile in patients with low HDL cholesterol levels. Anadolu Kardiyol Derg. 2004 Dec;4(4):318-22. https://pubmed.ncbi.nlm.nih.gov/15590360/
  2. Bjarnason NH, Riis BJ, Christiansen C. The effect of fluvastatin on parameters of bone remodeling. Osteoporos Int. 2001;12(5):380-4. https://pubmed.ncbi.nlm.nih.gov/11444086/
  3. Ivanov V, Ivanova S, Niedzwiecki A, et al. Vitamin C inhibits the calcification process in human vascular smooth muscle cells. Am J Cardiovasc Dis. 2020 Jun 15;10(2):108-116. https://pubmed.ncbi.nlm.nih.gov/32685268/
  4. Cash WJ, O'Neill S, O'Donnell ME, et al. Randomized controlled trial assessing the effect of simvastatin in primary biliary cirrhosis. Liver Int. 2013 Sep;33(8):1166-74. https://pubmed.ncbi.nlm.nih.gov/23672463/
  5. Skrha J, Stulc T, Hilgertová J, et al. Effect of simvastatin and fenofibrate on endothelium in Type 2 diabetes. Eur J Pharmacol. 2004 Jun 16;493(1-3):183-9. https://pubmed.ncbi.nlm.nih.gov/15189781/
  6. Skelin M, Lucijanić T, Amidžić Klarić D, et al. Factors Affecting Gastrointestinal Absorption of Levothyroxine: A Review. Clin Ther. 2017 Feb;39(2):378-403. https://pubmed.ncbi.nlm.nih.gov/28153426/
  7. Jubiz W, Ramirez M. Effect of vitamin C on the absorption of levothyroxine in patients with hypothyroidism and gastritis. J Clin Endocrinol Metab. 2014 Jun;99(6):E1031-4. https://pubmed.ncbi.nlm.nih.gov/24601693/
  8. Antúnez PB, LichtSD. Vitamin C improves the apparent absorption of levothyroxine in a subset of patients receiving this hormone for primary hypothyroidism. Rev Argent EnvdocrinolMetab. 2011;48: 16–24. https://www.researchgate.net/publication/286462478
  9. Stamp LK, O'Donnell JL, Frampton C, et al. Clinically insignificant effect of supplemental vitamin C on serum urate in patients with gout: a pilot randomized controlled trial. Arthritis Rheum. 2013 Jun;65(6):1636-42. https://pubmed.ncbi.nlm.nih.gov/23681955/
  10. Huang HY, Appel LJ, Choi MJ, et al. The effects of vitamin C supplementation on serum concentrations of uric acid: results of a randomized controlled trial. Arthritis Rheum. 2005 Jun;52(6):1843-7. https://pubmed.ncbi.nlm.nih.gov/15934094/
  11. Zadrozniak M, Szymanski M, Luszczki JJ. Vitamin C alleviates ototoxic effect caused by coadministration of amikacin and furosemide. Pharmacol Rep. 2019 Apr;71(2):351-356. https://pubmed.ncbi.nlm.nih.gov/30831441/
  12. Mydlík M, Derzsiová K, Zemberová E. Influence of water and sodium diuresis and furosemide on urinary excretion of vitamin B(6), oxalic acid and vitamin C in chronic renal failure. Miner Electrolyte Metab. 1999 Jul-Dec;25(4-6):352-6. https://pubmed.ncbi.nlm.nih.gov/10681666/
  13. Erkut B, Özyazıcıoğlu A, Karapolat BS, et al. Effects of ascorbic Acid, alpha-tocopherol and allopurinol on ischemia-reperfusion injury in rabbit skeletal muscle: an experimental study. Drug Target Insights. 2007;2:249-58. https://pubmed.ncbi.nlm.nih.gov/21901079/
  14. Gao X, Curhan G, Forman JP, et al. Vitamin C intake and serum uric acid concentration in men. J Rheumatol. 2008 Sep;35(9):1853-8. Epub 2008 May 1. https://pubmed.ncbi.nlm.nih.gov/18464304/
  15. Suresh E, Das P. Recent advances in management of gout. QJM. 2012 May;105(5):407-17.  https://pubmed.ncbi.nlm.nih.gov/22198943/
  16. Choi HK, Gao X, Curhan G. Vitamin C intake and the risk of gout in men: a prospective study. Arch Intern Med. 2009 Mar 9;169(5):502-7.  https://pubmed.ncbi.nlm.nih.gov/19273781/
  17. Bartlett HE, Eperjesi F. Nutritional supplementation for type 2 diabetes: a systematic review. Ophthalmic Physiol Opt. 2008 Nov;28(6):503-23. https://pubmed.ncbi.nlm.nih.gov/19076553/
  18. Chen H, Karne RJ, Hall G,et al. High-dose oral vitamin C partially replenishes vitamin C levels in patients with Type 2 diabetes and low vitamin C levels but does not improve endothelial dysfunction or insulin resistance. Am J Physiol Heart Circ Physiol. 2006 Jan;290(1):H137-45. https://pubmed.ncbi.nlm.nih.gov/16126809/
  19. Lu Q, Björkhem I, Wretlind B, et al. Effect of ascorbic acid on microcirculation in patients with Type II diabetes: a randomized placebo-controlled cross-over study. Clin Sci (Lond). 2005 Jun;108(6):507-13. https://pubmed.ncbi.nlm.nih.gov/15675894/
  20. Darko D, Dornhorst A, Kelly FJ, et al. Lack of effect of oral vitamin C on blood pressure, oxidative stress and endothelial function in Type II diabetes. Clin Sci (Lond). 2002 Oct;103(4):339-44. https://pubmed.ncbi.nlm.nih.gov/12241530/
  21. Mullan BA, Young IS, Fee H, et al. Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes. Hypertension. 2002 Dec;40(6):804-9. https://pubmed.ncbi.nlm.nih.gov/12468561/
  22. Wang H, Zhang ZB, Wen RR, et al. Experimental and clinical studies on the reduction of erythrocyte sorbitol-glucose ratios by ascorbic acid in diabetes mellitus. Diabetes Res Clin Pract. 1995 Apr;28(1):1-8. https://pubmed.ncbi.nlm.nih.gov/7587907/
  23. Paolisso G, Balbi V, Volpe C, et al. Metabolic benefits deriving from chronic vitamin C supplementation in aged non-insulin dependent diabetics. J Am Coll Nutr. 1995 Aug;14(4):387-92. https://pubmed.ncbi.nlm.nih.gov/8568117/
  24. Eriksson J, Kohvakka A. Magnesium and ascorbic acid supplementation in diabetes mellitus. Ann Nutr Metab. 1995;39(4):217-23. https://pubmed.ncbi.nlm.nih.gov/8546437/
  25. El-Aal AA, El-Ghffar EAA, Ghali AA, et al. The effect of vitamin C and/or E supplementations on type 2 diabetic adult males under metformin treatment: A single-blinded randomized controlled clinical trial. Diabetes Metab Syndr. 2018 Jul;12(4):483-489. https://pubmed.ncbi.nlm.nih.gov/29571976/
  26. Gillani SW, Sulaiman SAS, Abdul MIM, et al. Combined effect of metformin with ascorbic acid versus acetyl salicylic acid on diabetes-related cardiovascular complication; a 12-month single blind multicenter randomized control trial. Cardiovasc Diabetol. 2017 Aug 14;16(1):103. https://pubmed.ncbi.nlm.nih.gov/28807030/
  27. Mason SA, Rasmussen B, van Loon LJC, et al. Ascorbic acid supplementation improves postprandial glycaemic control and blood pressure in individuals with type 2 diabetes: Findings of a randomized cross-over trial. Diabetes Obes Metab. 2019 Mar;21(3):674-682. https://pubmed.ncbi.nlm.nih.gov/30394006/
  28. Goldberg DJ, Robinson DM, Granger C. Clinical evidence of the efficacy and safety of a new 3-in-1 anti-aging topical night serum-in-oil containing melatonin, bakuchiol, and ascorbyl tetraisopalmitate: 103 females treated from 28 to 84 days. J Cosmet Dermatol. 2019 Jun;18(3):806-814. https://pubmed.ncbi.nlm.nih.gov/30924254/
  29. Rostami A, Moosavi SA, Dianat Moghadam H, et al. Micronuclei Assessment of The Radioprotective Effects of Melatonin and Vitamin C in Human Lymphocytes. Cell J. 2016 Spring;18(1):46-51. https://pubmed.ncbi.nlm.nih.gov/27054118/
  30. Dreher F, GABArd B, Schwindt DA, et al. Topical melatonin in combination with vitamins E and C protects skin from ultraviolet-induced erythema: a human study in vivo. Br J Dermatol. 1998 Aug;139(2):332-9. https://pubmed.ncbi.nlm.nih.gov/9767255/
  31. Dreher F, Denig N, GABArd B, et al. Effect of topical antioxidants on UV-induced erythema formation when administered after exposure. Dermatology. 1999;198(1):52-5 https://pubmed.ncbi.nlm.nih.gov/10026402/
  32. Gitto E, Tan DX, Reiter RJ, et al. Individual and synergistic antioxidative actions of melatonin: studies with Vitamin E, vitamin C, glutathione and desferrioxamine (desferoxamine) in rat liver homogenates. J Pharm Pharmacol. https://pubmed.ncbi.nlm.nih.gov/11697548/
  33. Sivrioglu EY, Kirli S, Sipahioglu D, et al. The impact of omega-3 fatty acids, vitamins E and C supplementation on treatment outcome and side effects in schizophrenia patients treated with haloperidol: an open-label pilot study. Prog Neuropsychopharmacol Biol Psychiatry. 2007 Oct 1;31(7):1493-9. https://pubmed.ncbi.nlm.nih.gov/17688987/
  34. Dakhale GN, Khanzode SD, Khanzode SS, et al. Supplementation of vitamin C with atypical antipsychotics reduces oxidative stress and improves the outcome of schizophrenia. Psychopharmacology (Berl). 2005 Nov;182(4):494-8. https://pubmed.ncbi.nlm.nih.gov/16133138/
  35. Michael N, Sourgens H, Arolt V, et al. Severe tardive dyskinesia in affective disorders: treatment with Vitamin E and C. Neuropsychobiology. 2002;46 Suppl 1:28-30. https://pubmed.ncbi.nlm.nih.gov/12571430/
  36. Sandyk R, Kanofsky JD. Vitamin C in the treatment of schizophrenia. Int J Neurosci. 1993 Jan;68(1-2):67-71. https://pubmed.ncbi.nlm.nih.gov/8063516/
  37. Youssef S, Salah M. Differential Expression of CD3, TNF-α, and VEGF Induced by Olanzapine on the Spleen of Adult Male Albino Rats and the Possible Protective Role of Vitamin C. Biomedicines. 2019 May 23;7(2):39. https://pubmed.ncbi.nlm.nih.gov/31126077/
  38. Heiser P, Sommer O, Schmidt AJ, et al. Effects of antipsychotics and vitamin C on the formation of reactive oxygen species. J Psychopharmacol. 2010 Oct;24(10):1499-504. https://pubmed.ncbi.nlm.nih.gov/19282419/
  39. Nagayama H, Hamamoto M, Ueda M, et al. The effect of ascorbic acid on the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clin Neuropharmacol. 2004 Nov-Dec;27(6):270-3. https://pubmed.ncbi.nlm.nih.gov/15613930/
  40. Yang HJ, Ehm G, Kim YE, et al. Liquid levodopa-carbidopa in advanced Parkinson's disease with motor complications. J Neurol Sci. 2017 Jun 15;377:6-11. https://pubmed.ncbi.nlm.nih.gov/28477709/
  41. van Laar T, Neef C, Danhof M, et al. A new sublingual formulation of apomorphine in the treatment of patients with Parkinson's disease. Mov Disord. 1996 Nov;11(6):633-8. https://pubmed.ncbi.nlm.nih.gov/8914088/
  42. Spencer ES, Pitcher T, Veron G, et al. Positive Association of Ascorbate and Inverse Association of Urate with Cognitive Function in People with Parkinson's Disease. Antioxidants (Basel). 2020 Sep 23;9(10):906. https://pubmed.ncbi.nlm.nih.gov/32977491/
  43. Ide K, Yamada H, Umegaki K, et al. Lymphocyte vitamin C levels as potential biomarker for progression of Parkinson's disease. Nutrition. 2015 Feb;31(2):406-8. https://pubmed.ncbi.nlm.nih.gov/25592020/
  44. Férnandez-Calle P, Jiménez-Jiménez FJ, Molina JA, et al. Serum levels of ascorbic acid (vitamin C) in patients with Parkinson's disease. J Neurol Sci. 1993 Aug;118(1):25-8. https://pubmed.ncbi.nlm.nih.gov/8229047/
  45. Etminan M, Gill SS, Samii A. Intake of Vitamin E, vitamin C, and carotenoids and the risk of Parkinson's disease: a meta-analysis. Lancet Neurol. 2005 Jun;4(6):362-5. https://pubmed.ncbi.nlm.nih.gov/15907740/
  46. Moretti M, Fraga DB, Rodrigues ALS. Preventive and therapeutic potential of ascorbic acid in neurodegenerative diseases. CNS Neurosci Ther. 2017 Dec;23(12):921-929. https://pubmed.ncbi.nlm.nih.gov/28980404/
  47. Zhao X, Zhang M, Li C, et al. Benefits of Vitamins in the Treatment of Parkinson's Disease. Oxid Med Cell Longev. 2019 Feb 20;2019:9426867. https://pubmed.ncbi.nlm.nih.gov/30915197/
  48. Hughes KC, Gao X, Kim IY, et al. Intake of antioxidant vitamins and risk of Parkinson's disease. Mov Disord. 2016 Dec;31(12):1909-1914.  https://pubmed.ncbi.nlm.nih.gov/27787934/
  49. Zhang SM, Hernán MA, Chen H, et al. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology. 2002 Oct 22;59(8):1161-9. https://pubmed.ncbi.nlm.nih.gov/12391343/
  50. Yang F, Wolk A, Håkansson N, et al. Dietary antioxidants and risk of Parkinson's disease in two population-based cohorts. Mov Disord. 2017 Nov;32(11):1631-1636. https://pubmed.ncbi.nlm.nih.gov/28881039/
  51. Miyake Y, Fukushima W, Tanaka K, et al. Dietary intake of antioxidant vitamins and risk of Parkinson's disease: a case-control study in Japan. Eur J Neurol. 2011 Jan;18(1):106-13. https://pubmed.ncbi.nlm.nih.gov/20491891/
  52. Agarwal P, Wang Y, Buchman AS, et al. Dietary antioxidants associated with slower progression of parkinsonian signs in older adults. Nutr Neurosci. 2020 May 22:1-8. https://pubmed.ncbi.nlm.nih.gov/32441566/
  53. Nikolova G, Karamalakova Y, Gadjeva V. Reducing oxidative toxicity of L-dopa in combination with two different antioxidants: an essential oil isolated from Rosa Damascena Mill., and vitamin C. Toxicol Rep. 2019 Mar 22;6:267-271. https://pubmed.ncbi.nlm.nih.gov/30984563/
  54. Pardo B, Mena MA, Fahn S, et al. Ascorbic acid protects against levodopa-induced neurotoxicity on a catecholamine-rich human neuroblastoma cell line. Mov Disord. 1993 Jul;8(3):278-84. https://pubmed.ncbi.nlm.nih.gov/8341291/
  55. Feetam CL, Leach RH, Meynell MJ. Lack of a clinically important interaction between warfarin and ascorbic acid. Toxicol Appl Pharmacol. 1975 Mar;31(3):544-7.  https://pubmed.ncbi.nlm.nih.gov/1145638/
  56. Hume R, Johnstone JM, Weyers E. Interaction of ascorbic acid and warfarin. JAMA. 1972 Mar 13;219(11):1479.  https://pubmed.ncbi.nlm.nih.gov/5066913/
  57. Sattar A, Willman JE, Kolluri R. Possible warfarin resistance due to interaction with ascorbic acid: case report and literature review. Am J Health Syst Pharm. 2013 May 1;70(9):782-6. https://pubmed.ncbi.nlm.nih.gov/23592361/
  58. Yousef GM, Goebel LJ. Vitamin C deficiency in an anticoagulated patient. J Gen Intern Med. 2013 Jun;28(6):852-4. https://pubmed.ncbi.nlm.nih.gov/23192448/
  59. Smith EC, Skalski RJ, Johnson GC, Rossi GV. Interaction of Ascorbic Acid and Warfarin. JAMA. 1972;221(10):1166. https://jamanetwork.com/journals/jama/article-abstract/344290
  60. Rosenthal G. Interaction of ascorbic acid and warfarin. JAMA. 1971 Mar 8;215(10):1671. https://pubmed.ncbi.nlm.nih.gov/5107696/
  61. Patel V, Fisher M, Voelker M, et al. Gastrointestinal effects of the addition of ascorbic acid to aspirin. Pain Pract. 2012 Jul;12(6):476-84.  https://pubmed.ncbi.nlm.nih.gov/22151399/
  62. Schulz HU, Schürer M, Krupp S, et al. Effects of acetylsalicylic acid on ascorbic acid concentrations in plasma, gastric mucosa, gastric juice and urine--a double-blind study in healthy subjects. Int J Clin Pharmacol Ther. 2004 Sep;42(9):481-7. https://pubmed.ncbi.nlm.nih.gov/15487806/
  63. Dammann HG, Saleki M, Torz M, et al. Effects of buffered and plain acetylsalicylic acid formulations with and without ascorbic acid on gastric mucosa in healthy subjects. Aliment Pharmacol Ther. 2004 Feb 1;19(3):367-74. https://pubmed.ncbi.nlm.nih.gov/14984384/
  64. Konturek PC, Kania J, Gessner U, et al. Effect of vitamin C-releasing acetylsalicylic acid on gastric mucosal damage before and after Helicobacter pylori eradication therapy. Eur J Pharmacol. 2004 Dec 15;506(2):169-77. https://pubmed.ncbi.nlm.nih.gov/15588738/
  65. Pohle T, Brzozowski T, Becker JC, et al. Role of reactive oxygen metabolites in aspirin-induced gastric damage in humans: gastroprotection by vitamin C. Aliment Pharmacol Ther. 2001 May;15(5):677-87. https://pubmed.ncbi.nlm.nih.gov/11328262/ 
  66. McAlindon ME, Muller AF, Filipowicz B, et al. Effect of allopurinol, sulphasalazine, and vitamin C on aspirin induced gastroduodenal injury in human volunteers. Gut. 1996 Apr;38(4):518-24. https://pubmed.ncbi.nlm.nih.gov/8707080/
  67. Rogalla K, Lange R, Panijel M. Gastric tolerance of single dose unbuffered and buffered acetylsalicylic acid: a randomized comparative endoscopic study in 24 volunteers. Int J Clin Pharmacol Res. 1992;12(3):133-8. https://pubmed.ncbi.nlm.nih.gov/1473880/
  68. Elfström C, Amin D, Nilsson LG, et aI. Subjective gastrointestinal tolerability of acetylsalicylic acid and paracetamol after single dose treatment. Eur J Pharm Sci. 1999 May;8(2):141-5. https://pubmed.ncbi.nlm.nih.gov/10210737/
  69. Polidori MC, Praticó D, Ingegni T, et al. Effects of vitamin C and aspirin in ischemic stroke-related lipid peroxidation: results of the AVASAS (Aspirin Versus Ascorbic acid plus Aspirin in Stroke) Study. Biofactors. 2005;24(1-4):265-74.  https://pubmed.ncbi.nlm.nih.gov/16403987/
  70. Chakraborty S, Kar SK, Roy K, et al. Exploring effects of different nonsteroidal antiinflammatory drugs on malondialdehyde profile. Acta Pol Pharm. 2006 Mar-Apr;63(2):83-8. https://pubmed.ncbi.nlm.nih.gov/17514869/
  71. Fotuhi M, Zandi PP, Hayden KM, et al. Better cognitive performance in elderly taking antioxidant vitamins E and C supplements in combination with nonsteroidal anti-inflammatory drugs: the Cache County Study. Alzheimers Dement. 2008 May;4(3):223-7. https://pubmed.ncbi.nlm.nih.gov/18631971/
  72. Kara Y, Doguc DK, Kulac E, et al. Acetylsalicylic acid and ascorbic acid combination improves cognition; via antioxidant effect or increased expression of NMDARs and nAChRs? Environ Toxicol Pharmacol. 2014 May;37(3):916-27. https://pubmed.ncbi.nlm.nih.gov/24699240/
  73. Gong EY, Shin YJ, Hwang IY, et al. Combined treatment with vitamin C and sulindac synergistically induces p53- and ROS-dependent apoptosis in human colon cancer cells. Toxicol Lett. 2016 Sep 6;258:126-133. https://pubmed.ncbi.nlm.nih.gov/27339904/
  74. Jaccob AA, Ahmed ZH, Aljasani BM. Vitamin C, omega-3 and paracetamol pharmacokinetic interactions using saliva specimens as determiners. J Basic Clin Physiol Pharmacol. 2019 Aug 6;30(5).  https://pubmed.ncbi.nlm.nih.gov/31393833/
  75. Houston JB, Levy G. Drug biotransformation interactions in man VI: acetaminophen and ascorbic acid. J Pharm Sci. 1976 Aug;65(8):1218-21. https://pubmed.ncbi.nlm.nih.gov/978441/
  76. Kocisová J, Rossner P, Binková B, et al. Mutagenicity studies on paracetamol in human volunteers. I. Cytogenetic analysis of peripheral lymphocytes and lipid peroxidation in plasma. Mutat Res. 1988 Nov-Dec;209(3-4):161-5. https://pubmed.ncbi.nlm.nih.gov/3193979/
  77. Topinka J, Srám RJ, Sirinjan G, et al. Mutagenicity studies on paracetamol in human volunteers. II. Unscheduled DNA synthesis and micronucleus test. Mutat Res. 1989 Nov;227(3):147-52. https://pubmed.ncbi.nlm.nih.gov/2811932/
  78. Ayatollahi V, Dehghanpour Farashah S, Behdad S, et al. Effect of intravenous vitamin C on postoperative pain in uvulopalatopharyngoplasty with tonsillectomy. Clin Otolaryngol. 2017 Feb;42(1):139-143. https://pubmed.ncbi.nlm.nih.gov/27219124/
  79. Matić MM, Paunović MG, Milošević MD, et al. Hematoprotective effects and antioxidant properties of β-glucan and vitamin C against acetaminophen-induced toxicity: an experimental study in rats. Drug Chem Toxicol. 2019 Mar 18:1-8. https://pubmed.ncbi.nlm.nih.gov/30880499/
  80. Abraham P. Vitamin C may be beneficial in the prevention of paracetamol-induced renal damage. Clin Exp Nephrol. 2005 Mar;9(1):24-30. https://pubmed.ncbi.nlm.nih.gov/15830269/
  81. Abraham P. Mega dose of vitamin C augments the nephrotoxicity of paracetamol. Nephrology (Carlton). 2005 Dec;10(6):623-4. https://pubmed.ncbi.nlm.nih.gov/16354249/ 
  82. Romero-Ferret C, Mottot G, Legros J, et al. Effect of vitamin C on acute paracetamol poisoning. Toxicol Lett. 1983 Aug;18(1-2):153-6. https://pubmed.ncbi.nlm.nih.gov/6623540/
  83. Allard JP, Aghdassi E, Chau J, et al. Effects of Vitamin E and C supplementation on oxidative stress and viral load in HIV-infected subjects. AIDS. 1998 Sep 10;12(13):1653-9. https://pubmed.ncbi.nlm.nih.gov/9764785/
  84. de la Asunción JG, del Olmo ML, Sastre J, et al. AZT treatment induces molecular and ultrastructural oxidative damage to muscle mitochondria. Prevention by antioxidant vitamins. J Clin Invest. 1998 Jul 1;102(1):4-9. https://pubmed.ncbi.nlm.nih.gov/9649550/
  85. Müller F, Svardal AM, Nordoy I, et al. Virological and immunological effects of antioxidant treatment in patients with HIV infection. Eur J Clin Invest. 2000 Oct;30(10):905-14.  https://pubmed.ncbi.nlm.nih.gov/11029606/
  86. Slain D, Amsden JR, Khakoo RA, et al. Effect of high-dose vitamin C on the steady-state pharmacokinetics of the protease inhibitor indinavir in healthy volunteers. Pharmacotherapy. 2005 Feb;25(2):165-70. https://pubmed.ncbi.nlm.nih.gov/15767232/
  87. Fawzi WW, Msamanga GI, Spiegelman D, et al. A randomized trial of multivitamin supplements and HIV disease progression and mortality. N Engl J Med. 2004 Jul 1;351(1):23-32. https://pubmed.ncbi.nlm.nih.gov/15229304/
  88. Musisi E, Matovu DK, Bukenya A, et al. Effect of anti-retroviral therapy on oxidative stress in hospitalized HIV-infected adults with and without TB. Afr Health Sci. 2018 Sep;18(3):512-522. https://pubmed.ncbi.nlm.nih.gov/30602982/
  89. Mebrat Y, Amogne W, Mekasha A, et al. Lipid Peroxidation and Altered Antioxidant Profiles with Pediatric HIV Infection and Antiretroviral Therapy in Addis Ababa, Ethiopia. J Trop Pediatr. 2017 Jun 1;63(3):196-202. https://pubmed.ncbi.nlm.nih.gov/27940963/ 
  90. Oliveira KF, Cunha DF, Weffort VR. Analysis of serum and supplemented vitamin C and oxidative stress in HIV-infected children and adolescents. J Pediatr (Rio J). 2011 Nov-Dec;87(6):517-22. https://pubmed.ncbi.nlm.nih.gov/22057470/
  91. Stephensen CB, Marquis GS, Jacob RA, et al. Vitamins C and E in adolescents and young adults with HIV infection. Am J Clin Nutr. 2006 Apr;83(4):870-9. https://pubmed.ncbi.nlm.nih.gov/16600941/
  92. Papparella I, Ceolotto G, Berto L, et al. Vitamin C prevents zidovudine-induced NAD(P)H oxidase activation and hypertension in the rat. Cardiovasc Res. 2007 Jan 15;73(2):432-8.  https://pubmed.ncbi.nlm.nih.gov/17123493/
  93. Demirag K, Askar FZ, Uyar M, et al. The protective effects of high dose ascorbic acid and diltiazem on myocardial ischaemia-reperfusion injury. Middle East J Anaesthesiol. 2001 Feb;16(1):67-79.  https://pubmed.ncbi.nlm.nih.gov/11281049/
  94. Mahajan AS, Babbar R, Kansal N, et al. Antihypertensive and antioxidant action of amlodipine and vitamin C in patients of essential hypertension. J Clin Biochem Nutr. 2007 Mar;40(2):141-7.  https://pubmed.ncbi.nlm.nih.gov/18188416/
  95. Drossos GE, Toumpoulis IK, Katritsis DG, et al. Is vitamin C superior to diltiazem for radial artery vasodilation in patients awaiting coronary artery bypass grafting? J Thorac Cardiovasc Surg. 2003 Feb;125(2):330-5. https://pubmed.ncbi.nlm.nih.gov/12579102/
  96. Ivanov V, Ivanova S, Kalinovsky T, et al. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate. Am J Cardiovasc Dis. 2016 May 18;6(2):26-35. https://pubmed.ncbi.nlm.nih.gov/27335688/
  97. Hung KC, Lin YT, Chen KH, et al. The Effect of Perioperative Vitamin C on Postoperative Analgesic Consumption: A Meta-Analysis of Randomized Controlled Trials. Nutrients. 2020 Oct 12;12(10):3109. https://pubmed.ncbi.nlm.nih.gov/33053814/
  98. Jarahzadeh M.H., Mousavi B.M.H., Abbasi H., et al. The efficacy of vitamin C infusion in reducing post-intubation sore throat. Med. časopis. 2019;53:95–100. www.researchgate.net/publication/340012123
  99. Jeon Y, Park JS, Moon S, et al. Effect of Intravenous High Dose Vitamin C on Postoperative Pain and Morphine Use after Laparoscopic Colectomy: A Randomized Controlled Trial. Pain Res Manag. 2016;2016:9147279. https://pubmed.ncbi.nlm.nih.gov/27872555/
  100. Moon S, Lim S, Yun J, et al. Additional effect of magnesium sulfate and vitamin C in laparoscopic gynecologic surgery for postoperative pain management: a double-blind randomized controlled trial. Anesth Pain Med (Seoul). 2020 Jan 31;15(1):88-95.  https://pubmed.ncbi.nlm.nih.gov/33329796/
  101. Moon S., Lim S.H., Cho K., et al. The efficacy of vitamin C on postlaparoscopic shoulder pain: A double-blind randomized controlled trial. Anesth. Pain Med. 2019;14:202–207. www.researchgate.net/publication/332803673
  102. Kanazi GE, El-Khatib MF, Yazbeck-Karam VG, et al. Effect of vitamin C on morphine use after laparoscopic cholecystectomy: a randomized controlled trial. Can J Anaesth. 2012 Jun;59(6):538-43. https://pubmed.ncbi.nlm.nih.gov/22402954/
  103. Laflı Tunay D, Türkeün Ilgınel M, Ünlügenç H, et al. Comparison of the effects of preoperative melatonin or vitamin C administration on postoperative analgesia. Bosn J Basic Med Sci. 2020 Feb 5;20(1):117-124. https://pubmed.ncbi.nlm.nih.gov/31465720/
  104. Pinkerton E, Good P, Gibbons K, et al. An open-label pilot study of oral vitamin C as an opioid-sparing agent in patients with chronic pain secondary to cancer. Support Care Cancer. 2017 Feb;25(2):341-343.  https://pubmed.ncbi.nlm.nih.gov/27815713/
  105. Talkhooncheh M, Alaei HA, Ramshini E, et al. The effect of vitamin C on morphine self-administration in rats. Adv Biomed Res. 2014 Aug 26;3:178. https://pubmed.ncbi.nlm.nih.gov/25250292/
  106. Kulkarni SK, Deshpande C, Dhir A. Ascorbic Acid inhibits development of tolerance and dependence to opiates in mice: possible glutamatergic or dopaminergic modulation. Indian J Pharm Sci. 2008 Jan;70(1):56-60. https://pubmed.ncbi.nlm.nih.gov/20390081/
  107. Alaei H, Esmaeili M, Nasimi A, et al. Ascorbic acid decreases morphine self-administration and withdrawal symptoms in rats. Pathophysiology. 2005 Sep;12(2):103-7. https://pubmed.ncbi.nlm.nih.gov/15869871/
  108. Blackhall ML, Fassett RG, Sharman JE, et al. Effects of antioxidant supplementation on blood cyclosporin A and glomerular filtration rate in renal transplant recipients. Nephrol Dial Transplant. 2005 Sep;20(9):1970-5. https://pubmed.ncbi.nlm.nih.gov/15998657/
  109. de Vries AP, Oterdoom LH, Gans RO, et al. Supplementation with anti-oxidants Vitamin C and E decreases cyclosporine A trough-levels in renal transplant recipients. Nephrol Dial Transplant. 2006 Jan;21(1):231-2. https://pubmed.ncbi.nlm.nih.gov/16115840/
  110. Lake KD, Aaronson KD, Gorman LE, et al. Effect of oral Vitamin E and C therapy on calcineurin inhibitor levels in heart transplant recipients. J Heart Lung Transplant. 2005 Aug;24(8):990-4. https://pubmed.ncbi.nlm.nih.gov/16102431/
  111. Williams MJ, Sutherland WH, McCormick MP, et al. Vitamin C improves endothelial dysfunction in renal allograft recipients. Nephrol Dial Transplant. 2001 Jun;16(6):1251-5. https://pubmed.ncbi.nlm.nih.gov/11390728/
  112. Loong CC, Chang YH, Wu TH, et al. Antioxidant supplementation may improve renal transplant function: a preliminary report. Transplant Proc. 2004 Oct;36(8):2438-9. https://pubmed.ncbi.nlm.nih.gov/15561272/
  113. Durak I, Karabacak HI, Büyükkoçak S, et al. Impaired antioxidant defense system in the kidney tissues from rabbits treated with cyclosporine. Protective effects of vitamins E and C. Nephron. 1998;78(2):207-11. https://pubmed.ncbi.nlm.nih.gov/9496739/
  114. Varghese Z, Fernando RL, Turakhia G, et al. Calcineurin inhibitors enhance low-density lipoprotein oxidation in transplant patients. Kidney Int Suppl. 1999 Jul;71:S137-40. https://pubmed.ncbi.nlm.nih.gov/10412758/
  115. Marik PE. Hydrocortisone, Ascorbic Acid and Thiamine (HAT Therapy) for the Treatment of Sepsis. Focus on Ascorbic Acid. Nutrients. 2018 Nov 14;10(11):1762. https://pubmed.ncbi.nlm.nih.gov/30441816/
  116. Obi J, Pastores SM, Ramanathan LV, et al. Treating sepsis with vitamin C, thiamine, and hydrocortisone: Exploring the quest for the magic elixir. J Crit Care. 2020 Jun;57:231-239.  https://pubmed.ncbi.nlm.nih.gov/32061462/
  117. Fujii T, Deane AM, Nair P. Metabolic support in sepsis: corticosteroids and vitamins: the why, the when, the how. Curr Opin Crit Care. 2020 Aug;26(4):363-368.  https://pubmed.ncbi.nlm.nih.gov/32487845/
  118. Ibrahim I, Zeitouni A, da Silva SD. Effect of Antioxidant Vitamins as Adjuvant Therapy for Sudden Sensorineural Hearing Loss: Systematic Review Study. Audiol Neurootol. 2018;23(1):1-7. https://pubmed.ncbi.nlm.nih.gov/29929192/
  119. Barabutis N, Khangoora V, Marik PE, et al. Hydrocortisone and Ascorbic Acid Synergistically Prevent and Repair Lipopolysaccharide-Induced Pulmonary Endothelial Barrier Dysfunction. Chest. 2017 Nov;152(5):954-962. https://pubmed.ncbi.nlm.nih.gov/28739448/
  120. Marik PE, Khangoora V, Rivera R, et al. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest. 2017 Jun;151(6):1229-1238. https://pubmed.ncbi.nlm.nih.gov/27940189/
  121. Kim WY, Jo EJ, Eom JS, et al. Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: Propensity score-based analysis of a before-after cohort study. J Crit Care. 2018 Oct;47:211-218. https://pubmed.ncbi.nlm.nih.gov/30029205/
  122. Tavasoli M., Azari O., Kheirandish R. Evaluation of combination therapy with hydrocortisone, vitamin C and Vitamin E in a rat model of intestine ischemia-reperfusion injury. Comp. Clin. Pathol. 2018;27:433–439. https://www.researchgate.net/publication/321318121
  123. Azari O, Kheirandish R, Azizi S, et al. Protective Effects of Hydrocortisone, Vitamin C and E Alone or in Combination against Renal Ischemia-Reperfusion Injury in Rat. Iran J Pathol. 2015 Fall;10(4):272-80. https://pubmed.ncbi.nlm.nih.gov/26351497/
  124. Fogarty A, Lewis SA, Scrivener SL, et al. Corticosteroid sparing effects of vitamin C and magnesium in asthma: a randomised trial. Respir Med. 2006 Jan;100(1):174-9.  https://pubmed.ncbi.nlm.nih.gov/16338599/
  125. Kaya H, Koç AK, Sayın İ, et al. Vitamins A, C, and E and selenium in the treatment of idiopathic sudden sensorineural hearing loss. Eur Arch Otorhinolaryngol. 2015 May;272(5):1119-25. https://pubmed.ncbi.nlm.nih.gov/24519034/
  126. Hatano M, Uramoto N, Okabe Y, et al. Vitamin E and vitamin C in the treatment of idiopathic sudden sensorineural hearing loss. Acta Otolaryngol. 2008 Feb;128(2):116-21. https://pubmed.ncbi.nlm.nih.gov/17851951/
  127. Sendrasoa FA, Ranaivo IM, Sata M, et al. Treatment responses in patients with vitiligo to very potent topical corticosteroids combined with vitaminotherapy in Madagascar. Int J Dermatol. 2019 Aug;58(8):908-911. https://pubmed.ncbi.nlm.nih.gov/31148154/
  128. Moon JM, Chun BJ. The efficacy of high doses of vitamin C in patients with paraquat poisoning. Hum Exp Toxicol. 2011 Aug;30(8):844-50.  https://pubmed.ncbi.nlm.nih.gov/20921062/
  129. Fogarty A, Lewis SA, Scrivener SL, et al. Oral magnesium and vitamin C supplements in asthma: a parallel group randomized placebo-controlled trial. Clin Exp Allergy. 2003 Oct;33(10):1355-9. https://pubmed.ncbi.nlm.nih.gov/14519140/
  130. Fujii T, Luethi N, Young PJ, et al. Effect of Vitamin C, Hydrocortisone, and Thiamine vs Hydrocortisone Alone on Time Alive and Free of Vasopressor Support Among Patients With Septic Shock: The VITAMINS Randomized Clinical Trial. JAMA. 2020 Feb 4;323(5):423-431.  https://pubmed.ncbi.nlm.nih.gov/31950979/
  131. Min Y, Sun T, Niu Z, et al. Vitamin C and Vitamin E supplementation alleviates oxidative stress induced by dexamethasone and improves fertility of breeder roosters. Anim Reprod Sci. 2016 Aug;171:1-6. https://pubmed.ncbi.nlm.nih.gov/27297178/
  132. Moritz B, Schmitz AE, Rodrigues ALS, et al. The role of vitamin C in stress-related disorders. J Nutr Biochem. 2020 Nov;85:108459. https://pubmed.ncbi.nlm.nih.gov/32745879/
  133. Amr M, El-Mogy A, Shams T, et al. Efficacy of vitamin C as an adjunct to fluoxetine therapy in pediatric major depressive disorder: a randomized, double-blind, placebo-controlled pilot study. Nutr J. 2013 Mar 9;12:31.  https://pubmed.ncbi.nlm.nih.gov/23510529/
  134. Aburawi SM, Ghambirlou FA, Attumi AA, et al. Effect of Ascorbic Acid on Mental Depression Drug Therapy: Clinical Study. J Psychol Psychother. 2014 4: 131. https://www.researchgate.net/publication/258628931
  135. Sahraian A, Ghanizadeh A, Kazemeini F. Vitamin C as an adjuvant for treating major depressive disorder and suicidal behavior, a randomized placebo-controlled clinical trial. Trials. 2015 Mar 14;16:94. https://pubmed.ncbi.nlm.nih.gov/25873303/
  136. Binfaré RW, Rosa AO, Lobato KR, et al. Ascorbic acid administration produces an antidepressant-like effect: evidence for the involvement of monoaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry. 2009 Apr 30;33(3):530-40. https://pubmed.ncbi.nlm.nih.gov/19439241/
  137. Moretti M, Budni J, Freitas AE, et al. TNF-α-induced depressive-like phenotype and p38(MAPK) activation are abolished by ascorbic acid treatment. Eur Neuropsychopharmacol. 2015 Jun;25(6):902-12. https://pubmed.ncbi.nlm.nih.gov/25836357/
  138. Liu T, Zhong S, Liao X, et al. A Meta-Analysis of Oxidative Stress Markers in Depression. PLoS One. 2015 Oct 7;10(10):e0138904. https://pubmed.ncbi.nlm.nih.gov/26445247/
  139. Lee JY, Choi HY, Yune TY. Fluoxetine and vitamin C synergistically inhibits blood-spinal cord barrier disruption and improves functional recovery after spinal cord injury. Neuropharmacology. 2016 Oct;109:78-87. https://pubmed.ncbi.nlm.nih.gov/27256500/
  140. Corbett AM, Sieber S, Wyatt N, et al. Increasing neurogenesis with fluoxetine, simvastatin and ascorbic Acid leads to functional recovery in ischemic stroke. Recent Pat Drug Deliv Formul. 2015;9(2):158-66. https://pubmed.ncbi.nlm.nih.gov/25612744/
  141. Jajoo A, Donlon C, Shnayder S, et al. Sertraline induces DNA damage and cellular toxicity in Drosophila that can be ameliorated by antioxidants. Sci Rep. 2020 Mar 11;10(1):4512. https://pubmed.ncbi.nlm.nih.gov/32161356/
  142. Caicedo Ochoa EY, Quintero Moreno CO, Méndez Fandiño YR, et al. Assessment of the use of vitamin C and E supplements concomitantly to antibiotic treatment against Helicobacter pylori: A systematic review and meta-analysis. Med Clin (Barc). 2018 Jul 23;151(2):45-52. https://pubmed.ncbi.nlm.nih.gov/29102269/
  143. Chuang CH, Sheu BS, Kao AW, et al. Adjuvant effect of vitamin C on omeprazole-amoxicillin-clarithromycin triple therapy for Helicobacter pylori eradication. Hepatogastroenterology. 2007 Jan-Feb;54(73):320-4. https://pubmed.ncbi.nlm.nih.gov/17419283/
  144. Kaboli SA, Zojaji H, Mirsattari D, et al. Effect of addition of vitamin C to clarithromycin-amoxicillin-omeprazol triple regimen on Helicobacter pylori eradication. Acta Gastroenterol Belg. 2009 Apr-Jun;72(2):222-4. https://pubmed.ncbi.nlm.nih.gov/19637777/
  145. Zojaji H, Talaie R, Mirsattari D, et al. The efficacy of Helicobacter pylori eradication regimen with and without vitamin C supplementation. Dig Liver Dis. 2009 Sep;41(9):644-7. https://pubmed.ncbi.nlm.nih.gov/19493713/
  146. Koçkar C, Oztürk M, Bavbek N. Helicobacter pylori eradication with beta carotene, ascorbic acid and allicin. Acta Medica (Hradec Kralove). 2001;44(3):97-100. https://pubmed.ncbi.nlm.nih.gov/11811084/
  147. Khajehei M, Keshavarz T, Tabatabaee HR. Randomised double-blind trial of the effect of vitamin C on dyspareunia and vaginal discharge in women receiving doxycycline and triple sulfa for chlamydial cervicitis. Aust N Z J Obstet Gynaecol. 2009 Oct;49(5):525-30. https://pubmed.ncbi.nlm.nih.gov/19780738/
  148. He J, Mao E, Xu W, et al. High dose vitamin C significantly reduces the nephrotoxicity of vancomycin in critically ill patients. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2020 Apr;32(4):468-472. https://pubmed.ncbi.nlm.nih.gov/32527355/
  149. Sirijatuphat R, Limmahakhun S, Sirivatanauksorn V, et al. Preliminary clinical study of the effect of ascorbic acid on colistin-associated nephrotoxicity. Antimicrob Agents Chemother. 2015;59(6):3224-32. https://pubmed.ncbi.nlm.nih.gov/25801556/
  150. Abdel-Daim MM, Ghazy EW. Effects of Nigella sativa oil and ascorbic acid against oxytetracycline-induced hepato-renal toxicity in rabbits. Iran J Basic Med Sci. 2015 Mar;18(3):221-7. https://pubmed.ncbi.nlm.nih.gov/25945233/ 
  151. Naseer F, Alam M. The protective effect of ascorbic acid on oxytetracycline induced nephrotoxicity and hepatotoxicity. J Pak Med Assoc. 1987 Mar;37(3):73-5. https://pubmed.ncbi.nlm.nih.gov/3106670/
  152. Devbhuti P, Saha A, Sengupta C. CLINDAMYCIN: EFFECTS ON PLASMA LIPID PROFILE AND PEROXIDATION PARAMETERS IN RABBIT BLOOD PLASMA. Acta Pol Pharm. 2015 Mar-Apr;72(2):253-60. https://pubmed.ncbi.nlm.nih.gov/26642675/
  153. Weyers A, Ugnia LI, Ovando HG, et al. Antioxidant capacity of vitamin C in mouse liver and kidney tissues. Biocell. 2008 Apr;32(1):27-31. https://pubmed.ncbi.nlm.nih.gov/18669320/
  154. Ocak S, Gorur S, Hakverdi S, et al. Protective effects of caffeic acid phenethyl ester, vitamin C, Vitamin E and N-acetylcysteine on vancomycin-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol. 2007 May;100(5):328-33. https://pubmed.ncbi.nlm.nih.gov/17448119/
  155. El-Shitany NA, El-Desoky K. Protective Effects of Carvedilol and Vitamin C against Azithromycin-Induced Cardiotoxicity in Rats via Decreasing ROS, IL1-β, and TNF-α Production and Inhibiting NF-κB and Caspase-3 Expression. Oxid Med Cell Longev. 2016;2016:1874762.  https://pubmed.ncbi.nlm.nih.gov/27274777/
  156. Devbhuti P, Saha A, Sengupta C. Gentamicin induced lipid peroxidation and its control with ascorbic acid. Acta Pol Pharm. 2009 Jul-Aug;66(4):363-9. https://pubmed.ncbi.nlm.nih.gov/19702167/
  157. Farombi EO, Ugwuezunmba MC, Ezenwadu TT, et al. Tetracycline-induced reproductive toxicity in male rats: effects of vitamin C and N-acetylcysteine. Exp Toxicol Pathol. 2008 Jun;60(1):77-85. https://pubmed.ncbi.nlm.nih.gov/18406588/
  158. Ayyildiz M, Coskun S, Yildirim M, et al. The effects of ascorbic acid on penicillin-induced epileptiform activity in rats. Epilepsia. 2007 Jul;48(7):1388-95. https://pubmed.ncbi.nlm.nih.gov/17433052/
  159. Xu W, Mao Z, Zhao B, et al. Vitamin C attenuates vancomycin induced nephrotoxicity through the reduction of oxidative stress and inflammation in HK-2 cells. Ann Palliat Med. 2021 Feb;10(2):1748-1754. https://pubmed.ncbi.nlm.nih.gov/33302636/
  160. Kwiecińska-Piróg J, Skowron K, Bogiel T, et al. Vitamin C in the Presence of Sub-Inhibitory Concentration of Aminoglycosides and Fluoroquinolones Alters Proteus mirabilis Biofilm Inhibitory Rate. Antibiotics (Basel). 2019 Aug 11;8(3):116.  https://pubmed.ncbi.nlm.nih.gov/31405233/
  161. El-Sokkary GH. Melatonin and vitamin C administration ameliorate diazepam-induced oxidative stress and cell proliferation in the liver of rats. Cell Prolif. 2008 Feb;41(1):168-76. https://pubmed.ncbi.nlm.nih.gov/18211292/
  162. Parle M, Dhingra D. Ascorbic Acid: a promising memory-enhancer in mice. J Pharmacol Sci. 2003 Oct;93(2):129-35.  https://pubmed.ncbi.nlm.nih.gov/14578579/
  163. Pavlovic V, Pavlovic D, Kamenov B, et al. Protective role of vitamin C in diazepam-induced apoptosis in rat thymocytes. Bratisl Lek Listy. 2012;113(6):350-3. https://pubmed.ncbi.nlm.nih.gov/22693970/
  164. Islam MT, Molla S, Zihad SMNK, et al. Ascorbic acid antagonizes the sedative effect of diazepam possibly through inhibition of GABA(Aρ₁) and GABA(B1) receptors. Cell Mol Biol (Noisy-le-grand). 2020 Jun 25;66(4):15-19. https://pubmed.ncbi.nlm.nih.gov/32583769/
  165. Mousavi S, Bereswill S, Heimesaat MM. Immunomodulatory and Antimicrobial Effects of Vitamin C. Eur J Microbiol Immunol (Bp). 2019 Aug 16;9(3):73-79.  https://pubmed.ncbi.nlm.nih.gov/31662885/
  166. Barbosa JL, Thiers CA, de Bragança Pereira B,et al. Impact of the Use of Benznidazole Followed by Antioxidant Supplementation in the Prevalence of Ventricular Arrhythmias in Patients With Chronic Chagas Disease: Pilot Study. Am J Ther. 2016 Nov/Dec;23(6):e1474-e1483. https://pubmed.ncbi.nlm.nih.gov/25461962/
  167. Ribeiro CM, Budni P, Pedrosa RC, et al. Antioxidant therapy attenuates oxidative insult caused by benzonidazole in chronic Chagas' heart disease. Int J Cardiol. 2010 Nov 5;145(1):27-33. https://pubmed.ncbi.nlm.nih.gov/19625091/
  168. Providello MV, Carneiro ZA, Portapilla GB, et al. Benefits of Ascorbic Acid in Association with Low-Dose Benznidazole in Treatment of Chagas Disease. Antimicrob Agents Chemother. 2018 Aug 27;62(9):e00514-18. https://pubmed.ncbi.nlm.nih.gov/29987143/
  169. Bae SK, Park SJ, Shim EJ, et al. Increased oral bioavailability of itraconazole and its active metabolite, 7-hydroxyitraconazole, when coadministered with a vitamin C beverage in healthy participants. J Clin Pharmacol. 2011 Mar;51(3):444-51. https://pubmed.ncbi.nlm.nih.gov/20400647/
  170. Leelahavanichkul A, Somparn P, Bootprapan T, et al. High-dose ascorbate with low-dose amphotericin B attenuates severity of disease in a model of the reappearance of candidemia during sepsis in the mouse. Am J Physiol Regul Integr Comp Physiol. 2015 Aug 1;309(3):R223-34. https://pubmed.ncbi.nlm.nih.gov/25994956/
  171. Belhachemi MH, Boucherit K, Boucherit-Otmani Z, et al. Effects of ascorbic acid and α-tocopherol on the therapeutic index of amphotericin B. J Mycol Med. 2014 Dec;24(4):e137-42. https://pubmed.ncbi.nlm.nih.gov/25442914/
  172. Martinez Mdel C, Afonso SG, Buzaleh AM, et al. Protective action of antioxidants on hepatic damage induced by griseofulvin. ScientificWorldJournal. 2014 Jan 12;2014:982358. https://pubmed.ncbi.nlm.nih.gov/24523661/
  173. Hosseini Omshi FS, Abbasalipourkabir R, Abbasalipourkabir M, et al. Effect of vitamin A and vitamin C on attenuation of ivermectin-induced toxicity in male Wistar rats. Environ Sci Pollut Res Int. 2018 Oct;25(29):29408-29417. https://pubmed.ncbi.nlm.nih.gov/30128972/
  174. Wang Y, Jia XM, Jia JH, et al. Ascorbic acid decreases the antifungal effect of fluconazole in the treatment of candidiasis. Clin Exp Pharmacol Physiol. 2009 Oct;36(10):e40-6. https://pubmed.ncbi.nlm.nih.gov/19413603/
  175. JamaliMoghadamSiahkali S, Zarezade B, Koolaji S, et al. Safety and effectiveness of high-dose vitamin C in patients with COVID-19: a randomized open-label clinical trial. Eur J Med Res. 2021 Feb 11;26(1):20.  https://pubmed.ncbi.nlm.nih.gov/33573699/
  176. Hiedra R, Lo KB, Elbashabsheh M, et al. The use of IV vitamin C for patients with COVID-19: a case series. Expert Rev Anti Infect Ther. 2020 Dec;18(12):1259-1261. https://pubmed.ncbi.nlm.nih.gov/32662690/
  177. Waqas Khan HM, Parikh N, Megala SM, et al. Unusual Early Recovery of a Critical COVID-19 Patient After Administration of Intravenous Vitamin C. Am J Case Rep. 2020 Jul 25;21:e925521. https://pubmed.ncbi.nlm.nih.gov/32709838/
  178. Razmi T M, Jindal AK, Arora K, et al. Refractory leg ulcers in prolidase deficiency with antiphospholipid antibody positivity responding to aspirin-hydroxychloroquine-vitamin C combination therapy. Dermatol Ther. 2020 Nov;33(6):e14156.  https://pubmed.ncbi.nlm.nih.gov/32927500/
  179. Roy LD, Mazumdar M, Giri S. Effects of low dose radiation and vitamin C treatment on chloroquine-induced genotoxicity in mice. Environ Mol Mutagen. 2008 Jul;49(6):488-95. https://pubmed.ncbi.nlm.nih.gov/18618582/
  180. Oliveira KRHM, Dos Anjos LM, Araújo APS, et al. Ascorbic acid prevents chloroquine-induced toxicity in inner glial cells. Toxicol In Vitro. 2019 Apr;56:150-155. https://pubmed.ncbi.nlm.nih.gov/30654088/
  181. Farombi EO. Genotoxicity of chloroquine in rat liver cells: protective role of free radical scavengers. Cell Biol Toxicol. 2006 May;22(3):159-67. https://pubmed.ncbi.nlm.nih.gov/16532284/
  182. McKoy MG, Kong-Quee Iii P, Pepple DJ. In vitro effects of co-incubation of blood with artemether/lumefantrine & vitamin C on the viscosity & elasticity of blood. Indian J Med Res. 2016 May;143(5):577-80. https://pubmed.ncbi.nlm.nih.gov/27488000/
  183. Papoulidis P, Ananiadou O, Chalvatzoulis E, et al. The role of ascorbic acid in the prevention of atrial fibrillation after elective on-pump myocardial revascularization surgery: a single-center experience--a pilot study. Interact Cardiovasc Thorac Surg. 2011 Feb;12(2):121-4.  https://pubmed.ncbi.nlm.nih.gov/21098510/
  184. Eslami M, Badkoubeh RS, Mousavi M, et al. Oral ascorbic acid in combination with beta-blockers is more effective than beta-blockers alone in the prevention of atrial fibrillation after coronary artery bypass grafting. Tex Heart Inst J. 2007;34(3):268-74. https://pubmed.ncbi.nlm.nih.gov/17948074/
  185. Budni P, Pedrosa RC, Dalmarco EM, et al. Carvedilol enhances the antioxidant effect of vitamins E and C in chronic Chagas heart disease. Arq Bras Cardiol. 2013 Oct;101(4):304-10. https://pubmed.ncbi.nlm.nih.gov/24008655/
  186. Palhares DB, Nascimento DR, Palhares MG, et al. Propranolol and ascorbic acid in control of fibrodysplasia ossificans progressiva flare-ups due to accidental falls. Intractable Rare Dis Res. 2019 Feb;8(1):24-28. https://pubmed.ncbi.nlm.nih.gov/30881854/
  187. Gonzalez JP, Valdivieso A, Calvo R, et al. Influence of vitamin C on the absorption and first pass metabolism of propranolol. Eur J Clin Pharmacol. 1995;48(3-4):295-7. https://pubmed.ncbi.nlm.nih.gov/7589058/
  188. Ballaz SJ, Rebec GV. Neurobiology of vitamin C: Expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol Res. 2019 Aug;146:104321. https://pubmed.ncbi.nlm.nih.gov/31229562/
  189. Kim JE, Cho KO. Functional Nutrients for Epilepsy. Nutrients. 2019 Jun 10;11(6):1309. https://pubmed.ncbi.nlm.nih.gov/31185666/
  190. Das A, Sarwar MS, Hossain MS, et al. Elevated Serum Lipid Peroxidation and Reduced Vitamin C and Trace Element Concentrations Are Correlated With Epilepsy. Clin EEG Neurosci. 2019 Jan;50(1):63-72. https://pubmed.ncbi.nlm.nih.gov/29788779/
  191. Shaikh AS, Guo X, Li Y, et al. The Impact of Antiepileptic Drugs on Vitamin Levels in Epileptic Patients. Curr Pharm Biotechnol. 2018;19(8):674-681.  https://pubmed.ncbi.nlm.nih.gov/30112988/
  192. Riffel AP, de Souza JA, Santos Mdo C, et al. Systemic administration of vitamins C and E attenuates nociception induced by chronic constriction injury of the sciatic nerve in rats. Brain Res Bull. 2016 Mar;121:169-77. https://pubmed.ncbi.nlm.nih.gov/26855326/
  193. Li R, Shen L, Yu X, et al. Vitamin C enhances the analgesic effect of GABApentin on rats with neuropathic pain. Life Sci. 2016 Jul 15;157:25-31. https://pubmed.ncbi.nlm.nih.gov/27245275/
  194. Saeed M, Saleem U, Anwar F, et al. Inhibition of Valproic Acid-Induced Prenatal Developmental Abnormalities with Antioxidants in Rats. ACS Omega. 2020 Mar 2;5(10):4953-4961. https://pubmed.ncbi.nlm.nih.gov/32201781/
  195. Daniel TA, Nawarskas JJ. Vitamin C in the prevention of nitrate tolerance. Ann Pharmacother. 2000 Oct;34(10):1193-7. https://pubmed.ncbi.nlm.nih.gov/11054990/
  196. Watanabe H, Kakihana M, Ohtsuka S, et al. Randomized, double-blind, placebo-controlled study of ascorbate on the preventive effect of nitrate tolerance in patients with congestive heart failure. Circulation. 1998 Mar 10;97(9):886-91.  https://pubmed.ncbi.nlm.nih.gov/9521337/
  197. Bassenge E, Fink N, Skatchkov M, et al. Dietary supplement with vitamin C prevents nitrate tolerance. J Clin Invest. 1998 Jul 1;102(1):67-71. https://pubmed.ncbi.nlm.nih.gov/9649558/
  198. Watanabe H, Kakihana M, Ohtsuka S, et al. Randomized, double-blind, placebo-controlled study of the preventive effect of supplemental oral vitamin C on attenuation of development of nitrate tolerance. J Am Coll Cardiol. 1998 May;31(6):1323-9. https://pubmed.ncbi.nlm.nih.gov/9581727/
  199. Raitakari OT, Adams MR, McCredie RJ, et al. Oral vitamin C and endothelial function in smokers: short-term improvement, but no sustained beneficial effect. J Am Coll Cardiol. 2000 May;35(6):1616-21. https://pubmed.ncbi.nlm.nih.gov/10807468/
  200. Gokce N, Keaney JF Jr, Frei B, et al. Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation. 1999 Jun 29;99(25):3234-40. https://pubmed.ncbi.nlm.nih.gov/10385496/
  201. Thomas GR, DiFabio JM, Gori T, et al. Once daily therapy with isosorbide-5-mononitrate causes endothelial dysfunction in humans: evidence of a free-radical-mediated mechanism. J Am Coll Cardiol. 2007 Mar 27;49(12):1289-95.  https://pubmed.ncbi.nlm.nih.gov/17394960/
  202. Das D, Sen C, Goswami A. Effect of Vitamin C on adrenal suppression by etomidate induction in patients undergoing cardiac surgery: A randomized controlled trial. Ann Card Anaesth. 2016 Jul-Sep;19(3):410-7. https://pubmed.ncbi.nlm.nih.gov/27397444/
  203. Nooraee N, Fathi M, Edalat L, et al. Effect of Vitamin C on Serum Cortisol after Etomidate Induction of Anesthesia. J Cell Mol Anesth. 2015Dec.22;1(1):28-3. https://journals.sbmu.ac.ir/jcma/article/view/10149
  204. Nathan N, Vandroux JC, Feiss P. Role of vitamin C on adrenocortical effects of etomidate. Ann Fr Anesth Reanim. 1991;10(4):329-32. https://pubmed.ncbi.nlm.nih.gov/1656818/
  205. Teppema LJ, Romberg RR, Dahan A. Antioxidants reverse reduction of the human hypoxic ventilatory response by subanesthetic isoflurane. Anesthesiology. 2005 Apr;102(4):747-53. https://pubmed.ncbi.nlm.nih.gov/15791103/
  206. Sardas S, Izdes S, Ozcagli E, et al. The role of antioxidant supplementation in occupational exposure to waste anaesthetic gases. Int Arch Occup Environ Health. 2006 Nov;80(2):154-9. https://pubmed.ncbi.nlm.nih.gov/16710711/ 
  207. Cheng B, Zhang Y, Wang A, et al. Vitamin C Attenuates Isoflurane-Induced Caspase-3 Activation and Cognitive Impairment. Mol Neurobiol. 2015 Dec;52(3):1580-1589. https://pubmed.ncbi.nlm.nih.gov/25367886/
  208. Xu KX, Tao J, Zhang N, et al. Neuroprotective properties of vitamin C on equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in high fat diet fed neonatal mice. Int J Clin Exp Med. 2015 Jul 15;8(7):10444-58.  https://pubmed.ncbi.nlm.nih.gov/26379835/
  209. Tian J, Li Y. Comparative effects of vitamin C on the effects of local anesthetics ropivacaine, bupivacaine, and lidocaine on human chondrocytes. Braz J Anesthesiol. 2016 Jan-Feb;66(1):29-36. https://pubmed.ncbi.nlm.nih.gov/26768927/
  210. Aditi A, Graham DY. Vitamin C, gastritis, and gastric disease: a historical review and update. Dig Dis Sci. 2012 Oct;57(10):2504-15. https://pubmed.ncbi.nlm.nih.gov/22543844/
  211. Heidelbaugh JJ. Proton pump inhibitors and risk of vitamin and mineral deficiency: evidence and clinical implications. Ther Adv Drug Saf. 2013 Jun;4(3):125-33. https://pubmed.ncbi.nlm.nih.gov/25083257/
  212. Khalife R, Grieco A, Khamisa K, et al. Scurvy, an old story in a new time: The hematologist's experience. Blood Cells Mol Dis. 2019 May;76:40-44. https://pubmed.ncbi.nlm.nih.gov/30704850/
  213. Henry EB, Carswell A, Wirz A, et al. Proton pump inhibitors reduce the bioavailability of dietary vitamin C. Aliment Pharmacol Ther. 2005 Sep 15;22(6):539-45. https://pubmed.ncbi.nlm.nih.gov/16167970/
  214. Elalfy MS, Saber MM, Adly AA, et al. Role of vitamin C as an adjuvant therapy to different iron chelators in young β-thalassemia major patients: efficacy and safety in relation to tissue iron overload. Eur J Haematol. 2016 Mar;96(3):318-26. https://pubmed.ncbi.nlm.nih.gov/26018112/
  215. Conte D, Brunelli L, Ferrario L, et al. Effect of ascorbic acid on desferrioxamine-induced urinary iron excretion in idiopathic hemochromatosis. Acta Haematol. 1984;72(2):117-20. https://pubmed.ncbi.nlm.nih.gov/6437113/ 
  216. Kontoghiorghes GJ, Aldouri MA, Hoffbrand AV, et al. Effective chelation of iron in beta thalassaemia with the oral chelator 1,2-dimethyl-3-hydroxypyrid-4-one. Br Med J (Clin Res Ed). 1987 Dec 12;295(6612):1509-12. https://pubmed.ncbi.nlm.nih.gov/3122880/
  217. Hussain MA, Green N, Flynn DM, et al. Effect of dose, time, and ascorbate on iron excretion after subcutaneous desferrioxamine. Lancet. 1977 May 7;1(8019):977-9. https://pubmed.ncbi.nlm.nih.gov/67469/
  218. Jensen PD, Olsen N, Bagger JP, et al. Cardiac function during iron chelation therapy in adult non-thalassaemic patients with transfusional iron overload. Eur J Haematol. 1997 Oct;59(4):221-30. https://pubmed.ncbi.nlm.nih.gov/9338620/
  219. Kontoghiorghes GJ, Kolnagou A, Kontoghiorghe CN, et al. Trying to Solve the Puzzle of the Interaction of Ascorbic Acid and Iron: Redox, Chelation and Therapeutic Implications. Medicines (Basel). 2020 Jul 30;7(8):45.  https://pubmed.ncbi.nlm.nih.gov/32751493/
  220. Ambruso DR, Mahony BS, Githens JH, et al. Effect of subcutaneous deferoxamine and oral vitamin C on iron excretion in congenital hypoplastic anemia and refractory anemia associated with the 5q-syndrome. Am J Pediatr Hematol Oncol. 1982 Summer;4(2):115-23. https://pubmed.ncbi.nlm.nih.gov/7114394/
  221. Mihalj M, Tadzic R, Vcev A, et aI. Blood Pressure Reduction is Associated With the Changes in Oxidative Stress and Endothelial Activation in Hypertension, Regardless of Antihypertensive Therapy. Kidney Blood Press Res. 2016;41(6):721-735. https://pubmed.ncbi.nlm.nih.gov/27788510/
  222. Ward NC, Hodgson JM, Croft KD, et al. The combination of vitamin C and grape-seed polyphenols increases blood pressure: a randomized, double-blind, placebo-controlled trial. J Hypertens. 2005 Feb;23(2):427-34. https://pubmed.ncbi.nlm.nih.gov/15662232/
  223. Magen E, Viskoper R, Mishal J, et al. Resistant arterial hypertension and hyperlipidemia: atorvastatin, not vitamin C, for blood pressure control. Isr Med Assoc J. 2004 Dec;6(12):742-6. https://pubmed.ncbi.nlm.nih.gov/15609886/
  224. Vihtamäki T, Parantainen J, Koivisto AM, et al. Oral ascorbic acid increases plasma oestradiol during postmenopausal hormone replacement therapy. Maturitas. 2002 Jun 25;42(2):129-35. https://pubmed.ncbi.nlm.nih.gov/12065172/
  225. Back DJ, Breckenridge AM, MacIver M, et al. Interaction of ethinyloestradiol with ascorbic acid in man. Br Med J (Clin Res Ed). 1981 May 9;282(6275):1516.  https://pubmed.ncbi.nlm.nih.gov/6786543/
  226. Briggs MH. Megadose vitamin C and metabolic effects of the pill. Br Med J (Clin Res Ed). 1981 Dec 5;283(6305):1547.  https://pubmed.ncbi.nlm.nih.gov/6799063/
  227. Waters DD, Alderman EL, Hsia J, et al. Effects of hormone replacement therapy and antioxidant vitamin supplements on coronary atherosclerosis in postmenopausal women: a randomized controlled trial. JAMA. 2002 Nov 20;288(19):2432-40. https://pubmed.ncbi.nlm.nih.gov/12435256/
  228. Morris JC, Beeley L, Ballantine N. Interaction of ethinyloestradiol with ascorbic acid in man. Br Med J (Clin Res Ed). 1981 Aug 15;283(6289):503. https://pubmed.ncbi.nlm.nih.gov/6790042/
  229. Niederberger E, Parnham MJ. The Impact of Diet and Exercise on Drug Responses. Int J Mol Sci. 2021 Jul 19;22(14):7692. https://pubmed.ncbi.nlm.nih.gov/34299312/
  230. Zamah NM, Hümpel M, Kuhnz W, et al. Absence of an effect of high vitamin C dosage on the systemic availability of ethinyl estradiol in women using a combination oral contraceptive. Contraception. 1993 Oct;48(4):377-91. https://pubmed.ncbi.nlm.nih.gov/8222665/
  231. Naziroğlu M, Simşek M. Effects of hormone replacement therapy with vitamin C and E supplementation on plasma thyroid hormone levels in postmenopausal women with Type 2 diabetes. Biomed Pharmacother. 2009 Dec;63(10):717-22. https://pubmed.ncbi.nlm.nih.gov/19917523/
  232. Rondanelli M, Peroni G, Fossari F, et al. Evidence of a Positive Link between Consumption and Supplementation of Ascorbic Acid and Bone Mineral Density. Nutrients. 2021 Mar 21;13(3):1012.  https://pubmed.ncbi.nlm.nih.gov/33801019/
  233. Morton DJ, Barrett-Connor EL, Schneider DL. Vitamin C supplement use and bone mineral density in postmenopausal women. J Bone Miner Res. 2001 Jan;16(1):135-40.  https://pubmed.ncbi.nlm.nih.gov/11149477/
  234. Kelemen M, Vaidya D, Waters DD, et al. Hormone therapy and antioxidant vitamins do not improve endothelial vasodilator function in postmenopausal women with established coronary artery disease: a substudy of the Women's Angiographic Vitamin and Estrogen (WAVE) trial. Atherosclerosis. 2005 Mar;179(1):193-200. https://pubmed.ncbi.nlm.nih.gov/15721027/
  235. Zayed Y, Alzghoul BN, Banifadel M, et al. Vitamin C, Thiamine, and Hydrocortisone in the Treatment of Sepsis: A Meta-Analysis and Trial Sequential Analysis of Randomized Controlled Trials. J Intensive Care Med. 2021 Jan 29:885066620987809. https://pubmed.ncbi.nlm.nih.gov/33511898/
  236. Somagutta MKR, Pormento MKL, Khan MA, et al. The Efficacy of vitamin C, thiamine, and corticosteroid therapy in adult sepsis patients: a systematic review and meta-analysis. Acute Crit Care. 2021 Aug;36(3):185-200. https://pubmed.ncbi.nlm.nih.gov/34185986/
  237. Fong KM, Au SY, Ng GWY. Steroid, ascorbic acid, and thiamine in adults with sepsis and septic shock: a systematic review and component network meta-analysis. Sci Rep. 2021 Aug 4;11(1):15777. https://pubmed.ncbi.nlm.nih.gov/34349184/
  238. Wu T, Hu C, Huang W, et al. Effect of Combined Hydrocortisone, Ascorbic Acid and Thiamine for Patients with Sepsis and Septic Shock: A Systematic Review and Meta-Analysis. Shock. 2021 Dec 1;56(6):880-889. https://pubmed.ncbi.nlm.nih.gov/34529397/
  239. Li T, Zeng J, Li DH, et al. Efficacy of intravenous vitamin C intervention for septic patients: A systematic review and meta-analysis based on randomized controlled trials. Am J Emerg Med. 2021 Aug 12;50:242-250. https://pubmed.ncbi.nlm.nih.gov/34416515/
  240. Scholz SS, Borgstedt R, Ebeling N, et al. Mortality in septic patients treated with vitamin C: a systematic meta-analysis. Crit Care. 2021 Jan 6;25(1):17. https://pubmed.ncbi.nlm.nih.gov/33407793/
  241. Lee YR, Vo K, Varughese JT. Benefits of combination therapy of hydrocortisone, ascorbic acid and thiamine in sepsis and septic shock: A systematic review. Nutr Health. 2021 May 26:2601060211018371. https://pubmed.ncbi.nlm.nih.gov/34039089/
  242. ASCOR drug-label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209112s000lbl.pdf
  243. Ahmed J, Zaman MM, Ali SM. Immunological response to antioxidant vitamin supplementation in rural Bangladeshi school children with group A streptococcal infection. Asia Pac J Clin Nutr. 2004;13(3):226-30. https://pubmed.ncbi.nlm.nih.gov/15331332/
  244. Fuchs-Tarlovsky V, Rivera MA, Altamirano KA, et al. Antioxidant supplementation has a positive effect on oxidative stress and hematological toxicity during oncology treatment in cervical cancer patients. Support Care Cancer. 2013 May;21(5):1359-63.  https://pubmed.ncbi.nlm.nih.gov/23238653/
  245. Weijl NI, Elsendoorn TJ, Lentjes EG, et al. Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study. Eur J Cancer. 2004 Jul;40(11):1713-23. https://pubmed.ncbi.nlm.nih.gov/15251161/
  246. Tarladacalisir YT, Kanter M, Uygun M. Protective effects of vitamin C on cisplatin-induced renal damage: a light and electron microscopic study. Ren Fail. 2008;30(1):1-8. https://pubmed.ncbi.nlm.nih.gov/18197536/
  247. Gao LP, Li Z, Guo ZY, et al. The effects of vitamin C on DDP-induced anemia in rats. Toxicol Mech Methods. 2013 Jul;23(6):383-8. https://pubmed.ncbi.nlm.nih.gov/23343350/
  248. Celebi S, Gurdal MM, Ozkul MH, et al. The effect of intratympanic vitamin C administration on cisplatin-induced ototoxicity. Eur Arch Otorhinolaryngol. 2013 Mar;270(4):1293-7. https://pubmed.ncbi.nlm.nih.gov/22907028/
  249. Tokgöz SA, Vuralkan E, Sonbay ND, et al. Protective effects of vitamins E, B and C and L-carnitine in the prevention of cisplatin-induced ototoxicity in rats. J Laryngol Otol. 2012 May;126(5):464-9. https://pubmed.ncbi.nlm.nih.gov/22490890/
  250. Alam J, Subhan F, Ullah I, et al. Synthetic and natural antioxidants attenuate cisplatin-induced vomiting. BMC Pharmacol Toxicol. 2017 Jan 13;18(1):4.  https://pubmed.ncbi.nlm.nih.gov/28081725/
  251. Fritz H, Flower G, Weeks L, et al. Intravenous Vitamin C and Cancer: A Systematic Review. Integr Cancer Ther. 2014 Jul;13(4):280-300.  https://pubmed.ncbi.nlm.nih.gov/24867961/
  252. Abdel-Latif MM, Raouf AA, Sabra K, et al. Vitamin C enhances chemosensitization of esophageal cancer cells in vitro. J Chemother. 2005 Oct;17(5):539-49. https://pubmed.ncbi.nlm.nih.gov/16323444/
  253. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Lett. 1996 Jun 5;103(2):183-9. https://pubmed.ncbi.nlm.nih.gov/8635156/
  254. Prasad KN, Sinha PK, Ramanujam M, et al. Sodium ascorbate potentiates the growth inhibitory effect of certain agents on neuroblastoma cells in culture. Proc Natl Acad Sci U S A. 1979 Feb;76(2):829-32. https://pubmed.ncbi.nlm.nih.gov/284405/
  255. Prasad SB, Giri A, Arjun J. Use of subtherapeutical dose of cisplatin and vitamin C against murine Dalton's lymphoma. Pol J Pharmacol Pharm. 1992 Jul-Aug;44(4):383-91. https://pubmed.ncbi.nlm.nih.gov/1287602/
  256. Reddy VG, Khanna N, Singh N. Vitamin C augments chemotherapeutic response of cervical carcinoma HeLa cells by stabilizing P53. Biochem Biophys Res Commun. 2001 Mar 30;282(2):409-15.  https://pubmed.ncbi.nlm.nih.gov/11401473/
  257. Sarna S, Bhola RK. Chemo-immunotherapeutical studies on Dalton's lymphoma in mice using cisplatin and ascorbic acid: synergistic antitumor effect in vivo and in vitro. Arch Immunol Ther Exp (Warsz). 1993;41(5-6):327-33. https://pubmed.ncbi.nlm.nih.gov/8010874/
  258. Bakalova R, Semkova S, Ivanova D, et al. Selective Targeting of Cancerous Mitochondria and Suppression of Tumor Growth Using Redox-Active Treatment Adjuvant. Oxid Med Cell Longev. 2020 Nov 2;2020:6212935. https://pubmed.ncbi.nlm.nih.gov/33204397/
  259. Ma Y, Chapman J, Levine M, et al. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. 2014 Feb 5;6(222):222ra18. https://pubmed.ncbi.nlm.nih.gov/24500406/
  260. Hoffer LJ, Robitaille L, Zakarian R, et al. High-dose intravenous vitamin C combined with cytotoxic chemotherapy in patients with advanced cancer: a phase I-II clinical trial. PLoS One. 2015 Apr 7;10(4):e0120228.  https://pubmed.ncbi.nlm.nih.gov/25848948/
  261. Ou J, Zhu X, Zhang H, et al. A Retrospective Study of Gemcitabine and Carboplatin With or Without Intravenous Vitamin C on Patients With Advanced Triple-Negative Breast Cancer. Integr Cancer Ther. 2020 Jan-Dec;19:1534735419895591. https://pubmed.ncbi.nlm.nih.gov/32070148/
  262. Drisko JA, Chapman J, Hunter VJ. The use of antioxidants with first-line chemotherapy in two cases of ovarian cancer. J Am Coll Nutr. 2003 Apr;22(2):118-23. https://pubmed.ncbi.nlm.nih.gov/12672707/
  263. Pathak AK, Bhutani M, Guleria R, et al. Chemotherapy alone vs. chemotherapy plus high dose multiple antioxidants in patients with advanced non small cell lung cancer. J Am Coll Nutr. 2005 Feb;24(1):16-21. https://pubmed.ncbi.nlm.nih.gov/15670980/
  264. Wang F, He MM, Wang ZX, et al. Phase I study of high-dose ascorbic acid with mFOLFOX6 or FOLFIRI in patients with metastatic colorectal cancer or gastric cancer. BMC Cancer. 2019 May 16;19(1):460. https://pubmed.ncbi.nlm.nih.gov/31096937/ 
  265. Pires AS, Marques CR, Encarnação JC, et al. Ascorbic Acid Chemosensitizes Colorectal Cancer Cells and Synergistically Inhibits Tumor Growth. Front Physiol. 2018 Jul 23;9:911. https://pubmed.ncbi.nlm.nih.gov/30083105/
  266. Joseph EK, Chen X, Bogen O, et al. Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. J Pain. 2008 May;9(5):463-72. https://pubmed.ncbi.nlm.nih.gov/18359667/
  267. D'Souza GG, Wang T, Rockwell K, et al. Surface modification of pharmaceutical nanocarriers with ascorbate residues improves their tumor-cell association and killing and the cytotoxic action of encapsulated paclitaxel in vitro. Pharm Res. 2008 Nov;25(11):2567-72.  https://pubmed.ncbi.nlm.nih.gov/18618230/
  268. Pathak AK, Singh N, Khanna N, et al. Potentiation of the effect of paclitaxel and carboplatin by antioxidant mixture on human lung cancer h520 cells. J Am Coll Nutr. 2002 Oct;21(5):416-21. https://pubmed.ncbi.nlm.nih.gov/12356783/
  269. Park JH, Davis KR, Lee G, et al. Ascorbic acid alleviates toxicity of paclitaxel without interfering with the anticancer efficacy in mice. Nutr Res. 2012 Nov;32(11):873-83. https://pubmed.ncbi.nlm.nih.gov/23176798/
  270. Martinotti S, Ranzato E, Burlando B. In vitro screening of synergistic ascorbate-drug combinations for the treatment of malignant mesothelioma. Toxicol In Vitro. 2011 Dec;25(8):1568-74. https://pubmed.ncbi.nlm.nih.gov/21645609/
  271. Suhail N, Bilal N, Khan HY, et al. Effect of vitamins C and E on antioxidant status of breast-cancer patients undergoing chemotherapy. J Clin Pharm Ther. 2012 Feb;37(1):22-6.  https://pubmed.ncbi.nlm.nih.gov/21204889/
  272. Haq AA, Nigar S, Rehman D. Potential of ascorbic acid as antioxidant on chemotherapeutic agent induced change in morphology of testes. J Pak Med Assoc. 2017 Apr;67(4):586-589.  https://pubmed.ncbi.nlm.nih.gov/28420921/
  273. Akolkar G, da Silva Dias D, Ayyappan P, et al. Vitamin C mitigates oxidative/nitrosative stress and inflammation in doxorubicin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol. 2017 Oct 1;313(4):H795-H809.  https://pubmed.ncbi.nlm.nih.gov/28710069/
  274. Shimpo K, Nagatsu T, Yamada K, et al. Ascorbic acid and adriamycin toxicity. Am J Clin Nutr. 1991 Dec;54(6 Suppl):1298S-1301S. https://pubmed.ncbi.nlm.nih.gov/1962586/
  275. Yang Y, Lu X, Liu Q, et al. Palmitoyl ascorbate and doxorubicin co-encapsulated liposome for synergistic anticancer therapy. Eur J Pharm Sci. 2017 Jul 15;105:219-229. https://pubmed.ncbi.nlm.nih.gov/28526602/
  276. Taper HS, de Gerlache J, Lans M, et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer. 1987 Oct 15;40(4):575-9. https://pubmed.ncbi.nlm.nih.gov/3666992/
  277. Heaney ML, Gardner JR, Karasavvas N, et al. Vitamin C antagonizes the cytotoxic effects of antineoplastic drugs. Cancer Res. 2008 Oct 1;68(19):8031-8. https://pubmed.ncbi.nlm.nih.gov/18829561/
  278. Vollbracht C, Schneider B, Leendert V, et al. Intravenous vitamin C administration improves quality of life in breast cancer patients during chemo-/radiotherapy and aftercare: results of a retrospective, multicentre, epidemiological cohort study in Germany. In Vivo. 2011 Nov-Dec;25(6):983-90. https://pubmed.ncbi.nlm.nih.gov/22021693/
  279. Zhao H, Zhu H, Huang J, et al. The synergy of Vitamin C with decitabine activates TET2 in leukemic cells and significantly improves overall survival in elderly patients with acute myeloid leukemia. Leuk Res. 2018 Mar;66:1-7. https://pubmed.ncbi.nlm.nih.gov/29331774/
  280. Kawada H, Sawanobori M, Tsuma-Kaneko M, et al. Phase I Clinical Trial of Intravenous L-ascorbic Acid Following Salvage Chemotherapy for Relapsed B-cell non-Hodgkin's Lymphoma. Tokai J Exp Clin Med. 2014 Sep 20;39(3):111-5. https://pubmed.ncbi.nlm.nih.gov/25248425/
  281. Monti DA, Mitchell E, Bazzan AJ, et al. Phase I evaluation of intravenous ascorbic acid in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. PLoS One. 2012;7(1):e29794.  https://pubmed.ncbi.nlm.nih.gov/22272248/
  282. Welsh JL, Wagner BA, van't Erve TJ, et al. Pharmacological ascorbate with gemcitabine for the control of metastatic and node-positive pancreatic cancer (PACMAN): results from a phase I clinical trial. Cancer Chemother Pharmacol. 2013 Mar;71(3):765-75. https://pubmed.ncbi.nlm.nih.gov/23381814/
  283. Alexander MS, Wilkes JG, Schroeder SR, et al. Pharmacologic Ascorbate Reduces Radiation-Induced Normal Tissue Toxicity and Enhances Tumor Radiosensitization in Pancreatic Cancer. Cancer Res. 2018 Dec 15;78(24):6838-6851.  https://pubmed.ncbi.nlm.nih.gov/30254147/
  284. Polireddy K, Dong R, Reed G, et al. High Dose Parenteral Ascorbate Inhibited Pancreatic Cancer Growth and Metastasis: Mechanisms and a Phase I/IIa study. Sci Rep. 2017 Dec 7;7(1):17188. https://pubmed.ncbi.nlm.nih.gov/29215048/ 
  285. Espey MG, Chen P, Chalmers B, et al. Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer. Free Radic Biol Med. 2011 Jun 1;50(11):1610-9. https://pubmed.ncbi.nlm.nih.gov/21402145/
  286. Welch JS, Klco JM, Gao F, et al. Combination decitabine, arsenic trioxide, and ascorbic acid for the treatment of myelodysplastic syndrome and acute myeloid leukemia: a phase I study. Am J Hematol. 2011 Sep;86(9):796-800. https://pubmed.ncbi.nlm.nih.gov/21815182/
  287. Nakanishi K, Goto K, Kondo K, et al. Irinotecan-Induced Skin Dryness Is Ameliorated By Orally Administered High-Dose Vitamin C In Mice. J Exp Pharmacol. 2019 Oct 9;11:109-114.  https://pubmed.ncbi.nlm.nih.gov/31632159/
  288. Kondo K, Sano R, Goto K, et al. Administration of High-Dose Vitamin C and Irinotecan Ameliorates Colorectal Cancer Induced by Azoxymethane and Dextran Sodium Sulfate in Mice. Biol Pharm Bull. 2018;41(12):1797-1803.  https://pubmed.ncbi.nlm.nih.gov/30504681/
  289. Sinha BK, van 't Erve TJ, Kumar A, et al. Synergistic enhancement of topotecan-induced cell death by ascorbic acid in human breast MCF-7 tumor cells. Free Radic Biol Med. 2017 Dec;113:406-412. https://pubmed.ncbi.nlm.nih.gov/29079526/
  290. Riordan HD, Riordan NH, Jackson JA, et al. Intravenous vitamin C as a chemotherapy agent: a report on clinical cases. P R Health Sci J. 2004 Jun;23(2):115-8.  https://pubmed.ncbi.nlm.nih.gov/15377059/
  291. Muralikrishnan G, Amalan Stanley V, Sadasivan Pillai K. Dual role of vitamin C on lipid profile and combined application of cyclophosphamide, methotrexate and 5-fluorouracil treatment in fibrosarcoma-bearing rats. Cancer Lett. 2001 Aug 28;169(2):115-20. https://pubmed.ncbi.nlm.nih.gov/11431099/
  292. Babu JR, Sundravel S, Arumugam G, et al. Salubrious effect of vitamin C and Vitamin E on tamoxifen-treated women in breast cancer with reference to plasma lipid and lipoprotein levels. Cancer Lett. 2000 Apr 3;151(1):1-5. https://pubmed.ncbi.nlm.nih.gov/10766415/
  293. Sundravel S, Shanthi P, Sachdanandam P. Therapeutic potential of riboflavin, niacin and ascorbic acid on carbohydrate metabolizing enzymes in secondary endometrial carcinoma bearing rats. Mol Cell Biochem. 2006 Aug;288(1-2):73-8. https://pubmed.ncbi.nlm.nih.gov/16691316/
  294. Taper HS, Roberfroid M. Non-toxic sensitization of cancer chemotherapy by combined vitamin C and K3 pretreatment in a mouse tumor resistant to oncovin. Anticancer Res. 1992 Sep-Oct;12(5):1651-4. https://pubmed.ncbi.nlm.nih.gov/1444232/
  295. Horstman MG, Meadows GG, Yost GS. Separate mechanisms for procarbazine spermatotoxicity and anticancer activity. Cancer Res. 1987 Mar 15;47(6):1547-50.  https://pubmed.ncbi.nlm.nih.gov/3815355/
  296. Farshid AA, Tamaddonfard E, Ranjbar S. Oral administration of vitamin C and histidine attenuate cyclophosphamide-induced hemorrhagic cystitis in rats. Indian J Pharmacol. 2013 Mar-Apr;45(2):126-9.  https://pubmed.ncbi.nlm.nih.gov/23716886/
  297. Das UB, Mallick M, Debnath JM, et al. Protective effect of ascorbic acid on cyclophosphamide- induced testicular gametogenic and androgenic disorders in male rats. Asian J Androl. 2002 Sep;4(3):201-7. https://pubmed.ncbi.nlm.nih.gov/12364977/
  298. Vasavi H, Thangaraju M, Babu JR, et al. The salubrious effects of ascorbic acid on cyclophosphamide instigated lipid abnormalities in fibrosarcoma bearing rats. Cancer Biochem Biophys. 1998 Jun;16(1-2):71-83.  https://pubmed.ncbi.nlm.nih.gov/9923969/
  299. Kola I, Vogel R, Spielmann H. Co-administration of ascorbic acid with cyclophosphamide (CPA) to pregnant mice inhibits the clastogenic activity of CPA in preimplantation murine blastocysts. Mutagenesis. 1989 Jul;4(4):297-301. https://pubmed.ncbi.nlm.nih.gov/2674608/
  300. Kilarkaje N, Mousa AM, Al-Bader MM, et al. Antioxidants enhance the recovery of three cycles of bleomycin, etoposide, and cisplatin-induced testicular dysfunction, pituitary-testicular axis, and fertility in rats. Fertil Steril. 2013 Oct;100(4):1151-9. https://pubmed.ncbi.nlm.nih.gov/23850298/
  301. Verrax J, Calderon PB. Pharmacologic concentrations of ascorbate are achieved by parenteral administration and exhibit antitumoral effects. Free Radic Biol Med. 2009 Jul 1;47(1):32-40. https://pubmed.ncbi.nlm.nih.gov/19254759/
  302. Gokturk D, Kelebek H, Ceylan S, et al. The Effect of Ascorbic Acid over the Etoposide- and Temozolomide-Mediated Cytotoxicity in Glioblastoma Cell Culture: A Molecular Study. Turk Neurosurg. 2018;28(1):13-18. https://pubmed.ncbi.nlm.nih.gov/28191621/
  303. Gokhalé P, Patel T, Morrison MJ, et al. The effect of intracellular ascorbate on the susceptibility of HL60 and Jurkat cells to chemotherapy agents. Apoptosis. 2006 Oct;11(10):1737-46. https://pubmed.ncbi.nlm.nih.gov/16951922/
  304. Desai VG, Lyn-Cook LE, Aidoo A, et al. Modulation of antioxidant enzymes in bleomycin-treated rats by vitamin C and beta-carotene. Nutr Cancer. 1997;29(2):127-32. https://pubmed.ncbi.nlm.nih.gov/9427975/
  305. Vijayalaxmi KK, Venu R. In vivo anticlastogenic effects of L-ascorbic acid in mice. Mutat Res. 1999 Jan 2;438(1):47-51. https://pubmed.ncbi.nlm.nih.gov/9858682/
  306. Maher HM, Alzoman NZ, Shehata SM. Ultra-performance LC-MS/MS study of the pharmacokinetic interaction of imatinib with selected vitamin preparations in rats. Bioanalysis. 2018 Jul;10(14):1099-1113. https://pubmed.ncbi.nlm.nih.gov/30047806/
  307. Akbulut S, Elbe H, Eris C, et al. Cytoprotective effects of amifostine, ascorbic acid and N-acetylcysteine against methotrexate-induced hepatotoxicity in rats. World J Gastroenterol. 2014 Aug 7;20(29):10158-65.  https://pubmed.ncbi.nlm.nih.gov/25110444/
  308. Savran M, Cicek E, Doguc DK, et al. Vitamin C attenuates methotrexate-induced oxidative stress in kidney and liver of rats. Physiol Int. 2017 Jun 29:1-11. https://pubmed.ncbi.nlm.nih.gov/28658959/
  309. Sayılmaz A, Karabulut YY, Özgörgülü A. The histopathological evaluation of healing effects of vitamin C administered before methotrexate therapy on testicular injury induced by methotrexate. Turk J Urol. 2016 Dec;42(4):235-239. https://pubmed.ncbi.nlm.nih.gov/27909615/
  310. da Silva Ferreira AR, Wardill HR, Havinga R, et al. Prophylactic Treatment with Vitamins C and B2 for Methotrexate-Induced Gastrointestinal Mucositis. Biomolecules. 2020 Dec 29;11(1):34.  https://pubmed.ncbi.nlm.nih.gov/33383956/
  311. Lorenzato A, Magrì A, Matafora V, et al. Vitamin C Restricts the Emergence of Acquired Resistance to EGFR-Targeted Therapies in Colorectal Cancer. Cancers (Basel). 2020 Mar 14;12(3):685. https://pubmed.ncbi.nlm.nih.gov/32183295/
  312. Jung SA, Lee DH, Moon JH, et al. L-Ascorbic acid can abrogate SVCT-2-dependent cetuximab resistance mediated by mutant KRAS in human colon cancer cells. Free Radic Biol Med. 2016 Jun;95:200-8.  https://pubmed.ncbi.nlm.nih.gov/27012422/
  313. Schoenfeld JD, Sibenaller ZA, Mapuskar KA, et al. O2⋅- and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate. Cancer Cell. 2017 Apr 10;31(4):487-500.e8. https://pubmed.ncbi.nlm.nih.gov/28366679/
  314. Baillie N, Carr AC, Peng S. The Use of Intravenous Vitamin C as a Supportive Therapy for a Patient with Glioblastoma Multiforme. Antioxidants (Basel). 2018 Aug 30;7(9):115. https://pubmed.ncbi.nlm.nih.gov/30200187/
  315. Park WH, Kim SH. MG132, a proteasome inhibitor, induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion. Oncol Rep. 2012 Apr;27(4):1284-91. https://pubmed.ncbi.nlm.nih.gov/22266922/
  316. Hong SW, Jin DH, Hahm ES, et al. Ascorbate (vitamin C) induces cell death through the apoptosis-inducing factor in human breast cancer cells. Oncol Rep. 2007 Oct;18(4):811-5. https://pubmed.ncbi.nlm.nih.gov/17786340/
  317. Günes-Bayir A, Kiziltan HS. Palliative Vitamin C Application in Patients with Radiotherapy-Resistant Bone Metastases: A Retrospective Study. Nutr Cancer. 2015;67(6):921-5. https://pubmed.ncbi.nlm.nih.gov/26168394/
  318. Park H, Kang J, Choi J, et al. The Effect of High Dose Intravenous Vitamin C During Radiotherapy on Breast Cancer Patients' Neutrophil-Lymphocyte Ratio. J Altern Complement Med. 2020 Nov;26(11):1039-1046. https://pubmed.ncbi.nlm.nih.gov/32876471/
  319. Chung MK, Kim do H, Ahn YC, et al. Randomized Trial of Vitamin C/E Complex for Prevention of Radiation-Induced Xerostomia in Patients with Head and Neck Cancer. Otolaryngol Head Neck Surg. 2016 Sep;155(3):423-30. https://pubmed.ncbi.nlm.nih.gov/27048670/
  320. Halperin EC, Gaspar L, George S, et al. A double-blind, randomized, prospective trial to evaluate topical vitamin C solution for the prevention of radiation dermatitis. CNS Cancer Consortium. Int J Radiat Oncol Biol Phys. 1993 Jun 15;26(3):413-6. https://pubmed.ncbi.nlm.nih.gov/8514538/
  321. Sharma M, Khan H, Thall PF, et al. A randomized phase 2 trial of a preparative regimen of bortezomib, high-dose melphalan, arsenic trioxide, and ascorbic acid. Cancer. 2012 May 1;118(9):2507-15. https://pubmed.ncbi.nlm.nih.gov/21887685/
  322. Held LA, Rizzieri D, Long GD, et al. A Phase I study of arsenic trioxide (Trisenox), ascorbic acid, and bortezomib (Velcade) combination therapy in patients with relapsed/refractory multiple myeloma. Cancer Invest. 2013 Mar;31(3):172-6. https://pubmed.ncbi.nlm.nih.gov/23406188/
  323. Qian W, Wang L, Li P, et al. Efficiency and Tolerability of Induction and Consolidation Therapy with Arsenic Trioxide/Bortezomib/Ascorbic Acid/Dexamethasone (ABCD) Regimen Compared to Bortezomib/Dexamethasone (BD) Regimen in Newly Diagnosed Myeloma Patients. Cancer Manag Res. 2020 Jan 20;12:431-441. https://pubmed.ncbi.nlm.nih.gov/32021455/ 
  324. Berenson JR, Yellin O, Woytowitz D, et al. Bortezomib, ascorbic acid and melphalan (BAM) therapy for patients with newly diagnosed multiple myeloma: an effective and well-tolerated frontline regimen. Eur J Haematol. 2009 Jun;82(6):433-9. https://pubmed.ncbi.nlm.nih.gov/19226361/
  325. Zou W, Yue P, Lin N, et al. Vitamin C inactivates the proteasome inhibitor PS-341 in human cancer cells. Clin Cancer Res. 2006 Jan 1;12(1):273-80. https://pubmed.ncbi.nlm.nih.gov/16397052/
  326. Berenson JR, Matous J, Swift RA, et al. A phase I/II study of arsenic trioxide/bortezomib/ascorbic acid combination therapy for the treatment of relapsed or refractory multiple myeloma. Clin Cancer Res. 2007 Mar 15;13(6):1762-8. https://pubmed.ncbi.nlm.nih.gov/17363530/
  327. Perrone G, Hideshima T, Ikeda H, et al. Ascorbic acid inhibits antitumor activity of bortezomib in vivo. Leukemia. 2009 Sep;23(9):1679-86. https://pubmed.ncbi.nlm.nih.gov/19369963/
  328. Shatzer AN, Espey MG, Chavez M, et al. Ascorbic acid kills Epstein-Barr virus positive Burkitt lymphoma cells and Epstein-Barr virus transformed B-cells in vitro, but not in vivo. Leuk Lymphoma. 2013 May;54(5):1069-78.  https://pubmed.ncbi.nlm.nih.gov/23067008/
  329. Llobet D, Eritja N, Encinas M, et al. Antioxidants block proteasome inhibitor function in endometrial carcinoma cells. Anticancer Drugs. 2008 Feb;19(2):115-24. https://pubmed.ncbi.nlm.nih.gov/18176107/
  330. Bannerman B, Xu L, Jones M, et al. Preclinical evaluation of the antitumor activity of bortezomib in combination with vitamin C or with epigallocatechin gallate, a component of green tea. Cancer Chemother Pharmacol. 2011 Nov;68(5):1145-54. https://pubmed.ncbi.nlm.nih.gov/21400028/
  331. Nakano A, Abe M, Oda A, et al. Delayed treatment with vitamin C and N-acetyl-L-cysteine protects Schwann cells without compromising the anti-myeloma activity of bortezomib. Int J Hematol. 2011 Jun;93(6):727-735. https://pubmed.ncbi.nlm.nih.gov/21526377/
  332. Berenson JR, Boccia R, Siegel D, et al. Efficacy and safety of melphalan, arsenic trioxide and ascorbic acid combination therapy in patients with relapsed or refractory multiple myeloma: a prospective, multicentre, phase II, single-arm study. Br J Haematol. 2006 Oct;135(2):174-83. https://pubmed.ncbi.nlm.nih.gov/17010047/ 
  333. Xia J, Xu H, Zhang X, et al. Multiple Myeloma Tumor Cells are Selectively Killed by Pharmacologically-dosed Ascorbic Acid. EBioMedicine. 2017 Apr;18:41-49.  https://pubmed.ncbi.nlm.nih.gov/28229908/
  334. Domingo JL, Gomez M, Llobet JM, et al. Effect of ascorbic acid on gastrointestinal aluminium absorption. Lancet. 1991 Dec 7;338(8780):1467. https://pubmed.ncbi.nlm.nih.gov/1683458/
  335. Domingo JL, Gomez M, Llobet JM, et al. Influence of some dietary constituents on aluminum absorption and retention in rats. Kidney Int. 1991 Apr;39(4):598-601. https://pubmed.ncbi.nlm.nih.gov/2051716/
  336. Colomina MT, Gómez M, Domingo JL, et al. Lack of maternal and developmental toxicity in mice given high doses of aluminium hydroxide and ascorbic acid during gestation. Pharmacol Toxicol. 1994 Apr-May;74(4-5):236-9. https://pubmed.ncbi.nlm.nih.gov/8090692/
  337. Wiesner A, Gajewska D, Paśko P. Levothyroxine Interactions with Food and Dietary Supplements-A Systematic Review. Pharmaceuticals (Basel). 2021 Mar 2;14(3):206. http://pubmed.ncbi.nlm.nih.gov/33801406/
  338. Yosaee S, Keshtkaran Z, Abdollahi S, et al. The effect of vitamin C supplementation on mood status in adults: a systematic review and meta-analysis of randomized controlled clinical trials. Gen Hosp Psychiatry. 2021 Jul-Aug;71:36-42. https://pubmed.ncbi.nlm.nih.gov/33932734/
  339. Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer-term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis. Intensive Care Med. 2022 Jan;48(1):16-24. https://pubmed.ncbi.nlm.nih.gov/34750650/
  340. Assouline B, Faivre A, Verissimo T, et al. Thiamine, Ascorbic Acid, and Hydrocortisone As a Metabolic Resuscitation Cocktail in Sepsis: A Meta-Analysis of Randomized Controlled Trials With Trial Sequential Analysis. Crit Care Med. 2021 Dec 1;49(12):2112-2120. https://pubmed.ncbi.nlm.nih.gov/34582409/
  341. Chang C, Luo K, Zhu H, Deng G, Gao Q. [Therapeutic effect of hydrocortisone combined with vitamin C and vitamin B1 on patients with sepsis: a Meta-analysis]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2021 Sep;33(9):1040-1046. Chinese. https://pubmed.ncbi.nlm.nih.gov/34839858/
  342. Ge Z, Huang J, Liu Y, et al. Thiamine combined with vitamin C in sepsis or septic shock: a systematic review and meta-analysis. Eur J Emerg Med. 2021 Jun 1;28(3):189-195. https://pubmed.ncbi.nlm.nih.gov/33709993/
  343. Xing X, Xu M, Yang L, et al. The efficacy of intravenous vitamin C in critically ill patients: A meta-analysis of randomized controlled trials. Clin Nutr. 2021 May;40(5):2630-2639. https://pubmed.ncbi.nlm.nih.gov/33933729/
  344. Ammar MA, Ammar AA, Condeni MS, Bell CM. Vitamin C for Sepsis and Septic Shock. Am J Ther. 2021 Jul 5;28(6):e649-e679. https://pubmed.ncbi.nlm.nih.gov/34264892/
  345. Krishnan K, Wassermann TB, Tednes P, et al. Beyond the bundle: Clinical controversies in the management of sepsis in emergency medicine patients. Am J Emerg Med. 2022 Jan;51:296-303. https://pubmed.ncbi.nlm.nih.gov/34785486/
  346. Song WL, Wu JF. [The controversy and value of the combination of hydrocortisone, ascorbic acid and thiamine in treating sepsis]. Zhonghua Yi Xue Za Zhi. 2021 May 11;101(17):1206-1209. https://pubmed.ncbi.nlm.nih.gov/34865389/
  347. Li YR, Zhu H. Vitamin C for sepsis intervention: from redox biochemistry to clinical medicine. Mol Cell Biochem. 2021 Dec;476(12):4449-4460. https://pubmed.ncbi.nlm.nih.gov/34478032/
  348. Rawat D, Roy A, Maitra S, Gulati A, Khanna P, Baidya DK. Vitamin C and COVID-19 treatment: A systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Syndr. 2021 Nov-Dec;15(6):102324. https://pubmed.ncbi.nlm.nih.gov/34739908/
  349. Kwak SG, Choo YJ, Chang MC. The effectiveness of high-dose intravenous vitamin C for patients with coronavirus disease 2019: A systematic review and meta-analysis. Complement Ther Med. 2021 Dec 22;64:102797.  https://pubmed.ncbi.nlm.nih.gov/34953366/
  350. Miranda-Massari JR, Toro AP, Loh D, et al. The Effects of Vitamin C on the Multiple Pathophysiological Stages of COVID-19. Life (Basel). 2021 Dec 3;11(12):1341. https://pubmed.ncbi.nlm.nih.gov/34947872/
  351. Uddin MS, Millat MS, Baral PK, et al. The protective role of vitamin C in the management of COVID-19: A Review. J Egypt Public Health Assoc. 2021 Dec 11;96(1):33. https://pubmed.ncbi.nlm.nih.gov/34894332/
  352. Holford P, Carr AC, Zawari M, Vizcaychipi MP. Vitamin C Intervention for Critical COVID-19: A Pragmatic Review of the Current Level of Evidence. Life (Basel). 2021 Nov 1;11(11):1166. https://pubmed.ncbi.nlm.nih.gov/34833042/
  353. Kumari P, Dembra S, Dembra P, et al. The Role of Vitamin C as Adjuvant Therapy in COVID-19. Cureus. 2020 Nov 30;12(11):e11779. https://pubmed.ncbi.nlm.nih.gov/33409026/
  354. Thomas S, Patel D, Bittel B, et al. Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs Usual Care on Symptom Length and Reduction Among Ambulatory Patients With SARS-CoV-2 Infection: The COVID A to Z Randomized Clinical Trial. JAMA Netw Open. 2021 Feb 1;4(2):e210369. https://pubmed.ncbi.nlm.nih.gov/33576820/
  355. Zhang J, Rao X, Li Y, et al. Pilot trial of high-dose vitamin C in critically ill COVID-19 patients. Ann Intensive Care. 2021 Jan 9;11(1):5. https://pubmed.ncbi.nlm.nih.gov/33420963/
  356. Gao D, Xu M, Wang G, et al. The efficiency and safety of high-dose vitamin C in patients with COVID-19: a retrospective cohort study. Aging (Albany NY). 2021 Feb 26;13(5):7020-7034. https://pubmed.ncbi.nlm.nih.gov/33638944/
  357. Li M, Ching TH, Hipple C, et al. Use of Intravenous Vitamin C in Critically Ill Patients With COVID-19 Infection. J Pharm Pract. 2021 Jun 8:8971900211015052. https://pubmed.ncbi.nlm.nih.gov/34098784/
  358. Suna K, Melahat UŞ, Murat Y, et al. Effect of high-dose intravenous vitamin C on prognosis in patients with SARS-CoV-2 pneumonia. Med Clin (Barc). 2021 May 11:S0025-7753(21)00252-9. https://pubmed.ncbi.nlm.nih.gov/34103164/
  359. Zhao B, Liu M, Liu P, et al. High Dose Intravenous Vitamin C for Preventing The Disease Aggravation of Moderate COVID-19 Pneumonia. A Retrospective Propensity Matched Before-After Study. Front Pharmacol. 2021 Apr 22;12:638556. https://pubmed.ncbi.nlm.nih.gov/33967773/
  360. Darban M, Malek F, Memarian M, et al. Efficacy of high dose vitamin C, melatonin and zinc in Iranian patients with acute respiratory syndrome due to coronavirus infection: a pilot randomized trial. J Cell Mol Anesth. 2021;6(2):164–167.  https://www.researchgate.net/publication/353038236
  361. Hakamifard A, Soltani R, Maghsoudi A, et al. The effect of Vitamin E and vitamin C in patients with COVID-19 pneumonia; a randomized controlled clinical trial. Immunopathol Persa, 2022;8(1):e08. https://www.researchgate.net/publication/351106686
  362. Milani GP, Macchi M, Guz-Mark A. Vitamin C in the Treatment of COVID-19. Nutrients. 2021 Apr 1;13(4):1172. https://pubmed.ncbi.nlm.nih.gov/33916257/
  363. duplicate of 351
  364. duplicate of 352
  365. Borran M, Dashti-Khavidaki S, Alamdari A, Naderi N. Vitamin C and kidney transplantation: Nutritional status, potential efficacy, safety, and interactions. Clin Nutr ESPEN. 2021 Feb;41:1-9. https://pubmed.ncbi.nlm.nih.gov/33487249/
  366. Conner TA, McQuade C, Olp J, Pai AB. Effect of intravenous vitamin C on cytokine activation and oxidative stress in end-stage renal disease patients receiving intravenous iron sucrose. Biometals. 2012 Oct;25(5):961-9.  https://pubmed.ncbi.nlm.nih.gov/22706571/
  367. Rahmani H, Khalili H. Prevention of vancomycin-induced nephrotoxicity; an update review of clinical and preclinical studies. Infect Disord Drug Targets. 2021 Mar 31. https://pubmed.ncbi.nlm.nih.gov/33797371/
  368. Hesham El-Sherazy N, Samir Bazan N, Mahmoud Shaheen S, A Sabri N. Impact of ascorbic acid in reducing the incidence of vancomycin associated nephrotoxicity in critically ill patients: A preliminary randomized controlled trial. F1000Res. 2021 Sep 16;10:929.  https://pubmed.ncbi.nlm.nih.gov/34621519/
  369. He J, Xu W, Zheng X, et al. Vitamin C reduces vancomycin-related nephrotoxicity through the inhibition of oxidative stress, apoptosis, and inflammation in mice. Ann Transl Med. 2021 Aug;9(16):1319.  https://pubmed.ncbi.nlm.nih.gov/34532456/
  370. Zasowska-Nowak A, Nowak PJ, Ciałkowska-Rysz A. High-Dose Vitamin C in Advanced-Stage Cancer Patients. Nutrients. 2021 Feb 26;13(3):735. https://pubmed.ncbi.nlm.nih.gov/33652579/
  371. Bahlis NJ, McCafferty-Grad J, Jordan-McMurry I, et al. Feasibility and correlates of arsenic trioxide combined with ascorbic acid-mediated depletion of intracellular glutathione for the treatment of relapsed/refractory multiple myeloma. Clin Cancer Res. 2002 Dec;8(12):3658-68. https://pubmed.ncbi.nlm.nih.gov/12473574/
  372. Villagran M, Ferreira J, Martorell M, Mardones L. The Role of Vitamin C in Cancer Prevention and Therapy: A Literature Review. Antioxidants (Basel). 2021 Nov 26;10(12):1894. https://pubmed.ncbi.nlm.nih.gov/34942996/
  373. Abou-Jawde RM, Reed J, Kelly M, et al. Efficacy and safety results with the combination therapy of arsenic trioxide, dexamethasone, and ascorbic acid in multiple myeloma patients: a phase 2 trial. Med Oncol. 2006;23(2):263-72. https://pubmed.ncbi.nlm.nih.gov/16720927/
  374. Wu KL, Beksac M, van Droogenbroeck J, et al. Phase II multicenter study of arsenic trioxide, ascorbic acid and dexamethasone in patients with relapsed or refractory multiple myeloma. Haematologica. 2006 Dec;91(12):1722-3.  https://pubmed.ncbi.nlm.nih.gov/17145617/
  375. Bruckner H, Hirschfeld A, Gurell D, Lee K. Broad safety impact of high-dose ascorbic acid and induction chemotherapy for high-risk pancreatic cancer. J Clin Oncol. 2017;35(15_suppl):e15711. https://www.researchgate.net/publication/327488303
  376. Böttger F, Vallés-Martí A, Cahn L, Jimenez CR. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. J Exp Clin Cancer Res. 2021 Oct 30;40(1):343.  https://pubmed.ncbi.nlm.nih.gov/34717701/
  377. Allen BG, Bodeker KL, Smith MC, et al. First-in-Human Phase I Clinical Trial of Pharmacologic Ascorbate Combined with Radiation and Temozolomide for Newly Diagnosed Glioblastoma. Clin Cancer Res. 2019 Nov 15;25(22):6590-6597. https://pubmed.ncbi.nlm.nih.gov/31427282/
  378. Renner O, Burkard M, Michels H, et al. Parenteral high‑dose ascorbate - A possible approach for the treatment of glioblastoma (Review). Int J Oncol. 2021 Jun;58(6):35. https://pubmed.ncbi.nlm.nih.gov/33955499/
  379. Mason SA, Keske MA, Wadley GD. Effects of Vitamin C Supplementation on Glycemic Control and Cardiovascular Risk Factors in People With Type 2 Diabetes: A GRADE-Assessed Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care. 2021 Feb;44(2):618-630.  https://pubmed.ncbi.nlm.nih.gov/33472962/
  380. Namkhah Z, Ashtary-Larky D, Naeini F, et al. Does vitamin C supplementation exert profitable effects on serum lipid profile in patients with type 2 diabetes? A systematic review and dose-response meta-analysis. Pharmacol Res. 2021 Jul;169:105665. https://pubmed.ncbi.nlm.nih.gov/33984490/
  381. Tareke AA, Hadgu AA. The effect of vitamin C supplementation on lipid profile of type 2 diabetic patients: a systematic review and meta-analysis of clinical trials. Diabetol Metab Syndr. 2021 Mar 2;13(1):24.  https://pubmed.ncbi.nlm.nih.gov/33653396/
  382. Agnieszka W, Paweł P, Małgorzata K. How to optimize the effectiveness and safety of Parkinson's disease therapy? - a systematic review of drugs interactions with food and dietary supplements. Curr Neuropharmacol. 2021 Nov 16. https://pubmed.ncbi.nlm.nih.gov/34784871/
  383. Mills E, Montori V, Perri D, Phillips E, Koren G. Natural health product-HIV drug interactions: a systematic review. Int J STD AIDS. 2005 Mar;16(3):181-6.
  384. Lee LS, Andrade AS, Flexner C. Interactions between natural health products and antiretroviral drugs: pharmacokinetic and pharmacodynamic effects. Clin Infect Dis. 2006 Oct 15;43(8):1052-9.  https://pubmed.ncbi.nlm.nih.gov/16983620/
  385. Straw GM, Bigelow LB, Kirch DG. Haloperidol and reduced haloperidol concentrations and psychiatric ratings in schizophrenic patients treated with ascorbic acid. J Clin Psychopharmacol. 1989 Apr;9(2):130-2.  https://pubmed.ncbi.nlm.nih.gov/2566628/
  386. Upton RA. Pharmacokinetic interactions between theophylline and other medication (Part I). Clin Pharmacokinet. 1991 Jan;20(1):66-80. https://pubmed.ncbi.nlm.nih.gov/1674242/
  387. Wilson JT, Boxtel CJ, Alvan G, Sjoqvist F. Failure of vitamin C to affect the pharmacokinetic profile of antipyrine in man. J Clin Pharmacol. 1976 May-Jun;16(5-6):265-70. https://pubmed.ncbi.nlm.nih.gov/1262536/
  388. Houston JB. Effect of vitamin C supplement on antipyrine disposition in man. Br J Clin Pharmacol. 1977 Apr;4(2):236-9.  https://pubmed.ncbi.nlm.nih.gov/861139/
  389. Smithard DJ, Langman MJ. Vitamin C and drug metabolism. Br Med J. 1977 Apr 16;1(6067):1029-30. https://pubmed.ncbi.nlm.nih.gov/851830/
  390. Blanchard J, Achari R, Harrison GG, Conrad KA. The influence of vitamin C on antipyrine pharmacokinetics in elderly men. Biopharm Drug Dispos. 1984 Jan-Mar;5(1):43-54.  https://pubmed.ncbi.nlm.nih.gov/6704506/
  391. Smithard DJ, Langman MJ. The effect of vitamin supplementation upon antipyrine metabolism in the elderly. Br J Clin Pharmacol. 1978 Feb;5(2):181-5.  https://pubmed.ncbi.nlm.nih.gov/619951/
  392. Zhang Q, Zhu Z, Ni Y. Interaction between aspirin and vitamin C with human serum albumin as binary and ternary systems. Spectrochim Acta A Mol Biomol Spectrosc. 2020 Aug 5;236:118356. https://pubmed.ncbi.nlm.nih.gov/32325408/
  393. Houston JB, Levy G. Effect of route of administration on competitive drug biotransformation interaction: salicylamide-ascorbic acid interaction in rats. J Pharmacol Exp Ther. 1976 Aug;198(2):284-94. https://pubmed.ncbi.nlm.nih.gov/948026/
  394. Tsuruta H, Yagishita T, Shimizu M, Tamura H. Megadose vitamin C suppresses sulfoconjugation in human colon carcinoma cell line Caco-2. Toxicol In Vitro. 2011 Mar;25(2):500-4. https://pubmed.ncbi.nlm.nih.gov/21144891/
  395. Back DJ, Orme ML. Pharmacokinetic drug interactions with oral contraceptives. Clin Pharmacokinet. 1990 Jun;18(6):472-84. https://pubmed.ncbi.nlm.nih.gov/2191822/
  396. van Heeswijk RP, Cooper CL, Foster BC, et al. Effect of high-dose vitamin C on hepatic cytochrome P450 3A4 activity. Pharmacotherapy. 2005 Dec;25(12):1725-8. https://pubmed.ncbi.nlm.nih.gov/16305291/
  397. Mori T, Itoh S, Ohgiya S, et al. Regulation of CYP1A and CYP3A mRNAs by ascorbic acid in guinea pigs. Arch Biochem Biophys. 1997 Dec 15;348(2):268-77. https://pubmed.ncbi.nlm.nih.gov/9434738/
  398. Kobayashi M, Hoshinaga Y, Miura N, et al. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats. Biosci Biotechnol Biochem. 2014;78(6):1060-6.  https://pubmed.ncbi.nlm.nih.gov/25036135/
  399. Kábrt J, Ocenásková J, Klein O, Pribyl T. Acute and chronic vitamin C deficiency in guinea-pigs: its effect on ceruloplasmin and cytochrome P 450 and B5 levels. Physiol Bohemoslov. 1982;31(3):249-54. http://pubmed.ncbi.nlm.nih.gov/6214811/
  400. Zannoni VG, Lynch MM. The role of ascorbic acid in drug metabolism. Drug Metab Rev. 1973;2(1):57-69.  http://pubmed.ncbi.nlm.nih.gov/4590232/
  401. Zannoni VG, Sato PH. The effect of certain vitamin deficiencies on hepatic drug metabolism. Fed Proc. 1976 Nov;35(13):2464-9. https://pubmed.ncbi.nlm.nih.gov/976490/
  402. Bidlack WR, Brown RC, Mohan C. Nutritional parameters that alter hepatic drug metabolism, conjugation, and toxicity. Fed Proc. 1986 Feb;45(2):142-8.  https://pubmed.ncbi.nlm.nih.gov/3510912/
  403. Neumann CM, Zannoni VG. Ascorbic acid deficiency and hepatic UDP-glucuronyltransferase. Drug Metab Dispos. 1988 Jul-Aug;16(4):551-6. https://pubmed.ncbi.nlm.nih.gov/2903022/
  404. Matsushita N, Kobayashi T, Oda H, Horio F, Yoshida A. Ascorbic acid deficiency reduces the level of mRNA for cytochrome P-450 on the induction by polychlorinated biphenyls. J Nutr Sci Vitaminol (Tokyo). 1993 Aug;39(4):289-302. https://pubmed.ncbi.nlm.nih.gov/8283309/
  405. Chanphai P, Tajmir-Riahi HA. Conjugation of vitamin C with serum proteins: A potential application for vitamin delivery. Int J Biol Macromol. 2019 Sep 15;137:966-972.  https://pubmed.ncbi.nlm.nih.gov/31295486/
  406. Nafisi S, Bagheri Sadeghi G, PanahYab A. Interaction of aspirin and vitamin C with bovine serum albumin. J Photochem Photobiol B. 2011 Dec 2;105(3):198-202. https://pubmed.ncbi.nlm.nih.gov/21995892/
  407. Meucci E, Martorana GE, Ursitti A, et al. Vitamin C-bovine serum albumin binding behaviour. Ital J Biochem. 1987 Mar-Apr;36(2):75-81. https://pubmed.ncbi.nlm.nih.gov/3597048/
  408. Li X, Wang G, Chen D, Lu Y. Binding of ascorbic acid and α-tocopherol to bovine serum albumin: a comparative study. Mol Biosyst. 2014 Feb;10(2):326-37.  https://pubmed.ncbi.nlm.nih.gov/24310979/
  409. Ioannides C, Stone AN, Breacker PJ, Basu TK. Impairment of absorption of ascorbic acid following ingestion of aspirin in guinea pigs. Biochem Pharmacol. 1982 Dec 15;31(24):4035-8. https://pubmed.ncbi.nlm.nih.gov/6818974/
  410. Daş N, Nebioğlu S. Vitamin C aspirin interactions in laboratory animals. J Clin Pharm Ther. 1992 Dec;17(6):343-6.  https://pubmed.ncbi.nlm.nih.gov/1287025/
  411. Levine M, Espey MG, Chen Q. Losing and finding a way at C: new promise for pharmacologic ascorbate in cancer treatment. Free Radic Biol Med. 2009 Jul 1;47(1):27-9.  https://pubmed.ncbi.nlm.nih.gov/19361554/
  412. Boelens Keun JT, Arnoldussen IA, Vriend C, van de Rest O. Dietary Approaches to Improve Efficacy and Control Side Effects of Levodopa Therapy in Parkinson's Disease: A Systematic Review. Adv Nutr. 2021 Dec 1;12(6):2265-2287. https://pubmed.ncbi.nlm.nih.gov/34113965/
  413. Suter M, Bollen Pinto B, et al. Efficacy and safety of perioperative vitamin C in patients undergoing noncardiac surgery: a systematic review and meta-analysis of randomized trials. Br J Anaesth. 2022 Jan 25:S0007-0912(21)00852-7. https://pubmed.ncbi.nlm.nih.gov/35090721/
  414. Vitamin C Fact Sheet for Health Professionals. NIH. https://ods.od.nih.gov/factsheets/Vitaminc-HealthProfessional
  415. Rumbold A, Ota E, Nagata C, Shahrook S, Crowther CA. Vitamin C supplementation in pregnancy. Cochrane Database Syst Rev. 2015 Sep 29;(9):CD004072. https://pubmed.ncbi.nlm.nih.gov/26415762/
  416. Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington (DC): National Academies Press (US); 2000. 5, vitamin C. https://www.ncbi.nlm.nih.gov/books/NBK225480/
  417. Kim Y, Oh YK, Lee J, Kim E. Could nutrient supplements provide additional glycemic control in diabetes management? A systematic review and meta-analysis of randomized controlled trials of as an add-on nutritional supplementation therapy. Arch Pharm Res. 2022 Mar;45(3):185-204.  https://pubmed.ncbi.nlm.nih.gov/35304727/
  418. Ao G, Li J, Yuan Y, Wang Y, Nasr B, Bao M, Gao M, Qi X. Intravenous vitamin C use and risk of severity and mortality in COVID-19: A systematic review and meta-analysis. Nutr Clin Pract. 2022 Apr;37(2):274-281.  https://pubmed.ncbi.nlm.nih.gov/35148440/
  419. Gavrielatou E, Xourgia E, Xixi NA, et al. Effect of Vitamin C on Clinical Outcomes of Critically Ill Patients With COVID-19: An Observational Study and Subsequent Meta-Analysis. Front Med (Lausanne). 2022 Feb 11;9:814587.  https://pubmed.ncbi.nlm.nih.gov/35223911
  420. Krishnan S, Patel K, Desai R, et al. Clinical comorbidities, characteristics, and outcomes of mechanically ventilated patients in the State of Michigan with SARS-CoV-2 pneumonia. J Clin Anesth. 2020 Dec;67:110005. https://pubmed.ncbi.nlm.nih.gov/32707517/
  421. Zheng S, Chen Q, Jiang H, Guo C, Luo J, Li S, Wang H, Li H, Zheng X, Weng Z. No significant benefit of moderate-dose vitamin C on severe COVID-19 cases. Open Med (Wars). 2021 Sep 22;16(1):1403-1414. https://pubmed.ncbi.nlm.nih.gov/34616916/
  422. Beigmohammadi MT, Bitarafan S, Hoseindokht A, et al. The effect of supplementation with vitamins A, B, C, D, and E on disease severity and inflammatory responses in patients with COVID-19: a randomized clinical trial. Trials. 2021 Nov 14;22(1):802. https://pubmed.ncbi.nlm.nih.gov/34776002/
  423. Rosengrave P, Spencer E, Williman J, et al. Intravenous vitamin C administration to patients with septic shock: a pilot randomised controlled trial. Crit Care. 2022 Jan 25;26(1):26.  https://pubmed.ncbi.nlm.nih.gov/35073968/
  424. Wang K, Yin L, Song Y, et al. The Use of Hydrocortisone, Ascorbic Acid and Thiamine in Patients with Sepsis and Septic Shock - A Systematic Review. J Pharm Pract. 2022 Apr 23:8971900221097193.  https://pubmed.ncbi.nlm.nih.gov/35465689/
  425. Carr AC, Vissers MC. Synthetic or food-derived vitamin C--are they equally bioavailable? Nutrients. 2013 Oct 28;5(11):4284-304. https://pubmed.ncbi.nlm.nih.gov/24169506/
  426. Padayatty SJ, Levine M. New insights into the physiology and pharmacology of vitamin C. CMAJ. 2001 Feb 6;164(3):353-5. https://pubmed.ncbi.nlm.nih.gov/11232136/
  427. Gregory JF 3rd. Ascorbic acid bioavailability in foods and supplements. Nutr Rev. 1993 Oct;51(10):301-3. https://pubmed.ncbi.nlm.nih.gov/8302486/
  428. Mangels AR, Block G, Frey CM, et al. The bioavailability to humans of ascorbic acid from oranges, orange juice and cooked broccoli is similar to that of synthetic ascorbic acid. J Nutr. 1993 Jun;123(6):1054-61. https://pubmed.ncbi.nlm.nih.gov/8505665/
  429. Liu P, Chen G, Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules. 2022 Feb 17;27(4):1372. https://pubmed.ncbi.nlm.nih.gov/35209162/
  430. Shade CW. Liposomes as Advanced Delivery Systems for Nutraceuticals. Integr Med (Encinitas). 2016 Mar;15(1):33-6. https://pubmed.ncbi.nlm.nih.gov/27053934/
  431. Łukawski M, Dałek P, Borowik T, Foryś A, Langner M, Witkiewicz W, Przybyło M. New oral liposomal vitamin C formulation: properties and bioavailability. J Liposome Res. 2020 Sep;30(3):227-234. https://pubmed.ncbi.nlm.nih.gov/31264495/
  432. Levine M, Conry-Cantilena C, Wang Y, et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3704-9. https://pubmed.ncbi.nlm.nih.gov/8623000/
  433. Graumlich JF, Ludden TM, Conry-Cantilena C, Cantilena LR Jr, Wang Y, Levine M. Pharmacokinetic model of ascorbic acid in healthy male volunteers during depletion and repletion. Pharm Res. 1997 Sep;14(9):1133-9. https://pubmed.ncbi.nlm.nih.gov/9327438/
  434. Duconge J, Miranda-Massari JR, Gonzalez MJ, Jackson JA, Warnock W, Riordan NH. Pharmacokinetics of vitamin C: insights into the oral and intravenous administration of ascorbate. P R Health Sci J. 2008 Mar;27(1):7-19. https://pubmed.ncbi.nlm.nih.gov/18450228/
  435. Assadpour E, Mahdi Jafari S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr. 2019;59(19):3129-3151. https://pubmed.ncbi.nlm.nih.gov/29883187/
  436. Davis JL, Paris HL, Beals JW, et al. Liposomal-encapsulated Ascorbic Acid: Influence on Vitamin C Bioavailability and Capacity to Protect Against Ischemia-Reperfusion Injury. Nutr Metab Insights. 2016 Jun 20;9:25-30. https://pubmed.ncbi.nlm.nih.gov/27375360/
  437. Gopi S, Balakrishnan P. Evaluation and clinical comparison studies on liposomal and non-liposomal ascorbic acid (vitamin C) and their enhanced bioavailability. J Liposome Res. 2021 Dec;31(4):356-364. https://pubmed.ncbi.nlm.nih.gov/32901526/
  438. Johnston CS, Luo B. Comparison of the absorption and excretion of three commercially available sources of vitamin C. J Am Diet Assoc. 1994 Jul;94(7):779-81. https://pubmed.ncbi.nlm.nih.gov/8021423/
  439. Cort WM. Antioxidant activity of tocopherols, ascorbyl palmitate, and ascorbic acid and their mode of action. J Am Oil Chem Soc. 1974 Jul;51(7):321-5. https://pubmed.ncbi.nlm.nih.gov/4845640/
  440. Ross, D. et al. Ascorbate 6-palmitate protects human erythrocytes from oxidative damage. Free Radical Biology and Medicine. 1999; volume 26: pages 81-89. https://pubmed.ncbi.nlm.nih.gov/9890643/
  441. DE RITTER E, COHEN N, RUBIN SH. Physiological availability of dehydro-L-ascorbic acid and palmitoyl-L-ascorbic acid. Science. 1951 Jun 1;113(2944):628-31. https://pubmed.ncbi.nlm.nih.gov/14845692/
  442. Austria R. et al. Stability of vitamin C derivatives in solution and in topical formulations. Journal of Pharmacology and Biomedical Analysis. 1997; volume 15: pages 795-801. https://pubmed.ncbi.nlm.nih.gov/9172105/



דוגמא לדף מידע מלא

לרכישת מנוי  |  כניסת מנויים

חזרה לתחילת העמוד

חזרה לעמוד הקודם