עם ישראל חי!
פתיחת תפריט נגישות
גישה מהירה לדף הבית

ויטמין D

עודכן בתאריך 03/04/2024
 

כללי | מקורות | תפקידים | תכונות | ספיגה והפרשה | גורמים לחוסר | תסמיני חוסר | עודף | RDA | מינונים | אינטראקציות חיוביות |  אינטראקציות שליליות | התוויות נגד | מחקרים 

כללי

ויטמין D הינו ויטמין מסיס בשומן המתפקד הן כויטמין והן כהורמון. 

הויטמין מצוי בתרכובות שונות כאשר אלו החיוניות לגוף האדם הינן (D3 (Cholecalciferol 

המופק בבעלי חיים ומיוצר בתאי עור באמצעות חשיפה לקרני השמש ו-(D2 (Ergocalciferol המופק בצמחים. 

תפקידו העיקרי של הויטמין כולל בקרה, ספיגה והטמעה של מינרלים ובעיקר סידן וזרחן בעצמות. 

כמו כן, הוא חיוני לתפקוד תקין של מערכת החיסון, חלוקה תקינה של תאי הגוף, בקרה על רמות אינסולין ועוד. 

חוסר בויטמין עלול להיווצר בעיקר עקב חשיפה מועטה לקרני השמש ולהתבטא בתסמינים שונים כגון אובדן מסת עצם. 

עודף בויטמין עלול להיווצר עקב שימוש במינונים גבוהים ולגרום לעודף של סידן בדם(היפרקלצמיה).  

 

 

מקורות תזונתיים לויטמין D:

מרבית הויטמין בגוף נוצר באמצעות חשיפה לשמש. עם זאת, קיימים מזונות אשר מכילים את הויטמין בכמויות מסוימות:

מקורות מן הצומח (בצורת D2): פטריות שיטאקי מיובשות.

מקורות מן החי (בצורת D3): שמן כבד דגים, דגים (סלמון, הרינג, טונה, מקרל, סרדינים), חלב ומוצריו וביצים.

 

תפקידו של ויטמין D:

  • חיוני למאזן של סידן – ויטמין D מגביר את ספיגתו של סידן במעיים (מגביר את הייצור של חלבון קושר סידן במעיים), מווסת את ספיגתו מחדש בכליה, מונע את הפרשתו דרך השתן ובשילוב עם הורמון בלוטת יותרת התריס מבקר את כניסתו ויציאתו של סידן מן העצם.

  • חיוני לספיגת מינרלים וויטמינים - ויטמין D חיוני לייצור ולפעילות של חלבונים אשר תפקידם לספוג מינרלים וויטמינים במעיים.

  • חיוני למבנה ולחוזק של העצמות והשיניים.

  • חיוני לחוזק ולפעילות תקינה של השרירים.

  • מסייע לחלוקה תקינה של תאים בגוף.

  • מגביר את פעילות מערכת החיסון – חיוני לגדילה והתפתחות של תאי דם לבנים (תאי מערכת החיסון) ותאים ריריים (תאי אפיתל) אשר משמשים כקו הגנה ראשון בפני מזהמים.

  • חיוני לתפקוד עצבי תקין.

  • מווסת את רמות האינסולין בדם ובכך מסייע לחילוף חומרים תקין של סוכרים.

  • מסייע במניעת סרטן – מונע היווצרות תאים סרטניים ותורם להרס של תאים חריגים.


תכונות נוספות של ויטמין D:

  • קיים בכמה תרכובות כאשר אלו החשובות לגוף הינם D3 (Cholecalciferol) ו- D2 (Ergocalciferol). 

  • D3 מיוצר בתאי העור באמצעות חשיפה מבוקרת לקרני השמש (כ- 10 דקות ביום) ומופק גם בבעלי חיים, D2 מיוצר בצמחים (כגון פטריות).

  • אנשים בעלי עור כהה זקוקים לחשיפה ארוכה יותר (כ- 30 דקות) לקרני השמש על מנת לקבל כמויות נאותות של ויטמין D.


ספיגה והפרשה של ויטמין D:

תהליך הספיגה של ויטמין D המגיע מן המזון (D2) נעשה במעי הדק בנוכחות מיצי מרה. 

ייצורו של ויטמין D3 נעשה בתאי העור באמצעות חשיפה מבוקרת לקרני השמש 

אשר גורמות להמרה של מולקולה דמוית כולסטרול (7-dehydrocholes) ל- D3

לאחר ספיגתו מועבר הויטמין באמצעות כילומיקרונים (רכיבים אשר תפקידם להוביל שומנים) דרך הלימפה שם נקשר לחלבון נשא ומועבר לכבד. 

שתי הצורות של הויטמין מאוחסנות בכבד שם הן עוברות המרה ל- Calcidiol לאחר מכן נישאות אל הכליות ועוברות המרה נוספת ל- Calcitriol

מהכליות עובר הויטמין בצורתו הפעילה דרך הדם אל השרירים ואל רקמות שומן בגוף. 

הספיגה של D3 יעילה יותר מזו של D2 כאשר חשיפה לקרני שמש מספקת כ- 80-90% מסה"כ הויטמין בגוף.

 

גורמים לחוסר בויטמין D:

חשיפה מועטה לקרני השמש – חשיפה מועטה לקרני השמש כמו במקרים של עבודה משרדית או לבוש צנוע (דתיים).

השמנת יתר – השמנת יתר גורמת לאגירה של הויטמין ברקמות השומן ומונעת את יציאתו אל זרם הדם.

בעיות עוריות – אצל אנשים אשר סובלים מהפרעות עוריות שונות עלול להיפגע ייצור של ויטמין D.

מחלות – אנשים הסובלים מהפרעות ספיגה (כגון מחלות מעי דלקתיות, צליאק, סיסטיק פיברוזיס ועוד), 

תפקוד לקוי של כבד וכליות ומיתר או תת פעילות של בלוטת התריס עלולים לסבול מחסר של ויטמין D.

גיל מבוגר – ככל שקיימת עלייה בגיל כך תפקוד המעיים פוחת וישנה ספיגה לקויה של ויטמינים ומינרלים רבים וביניהם ויטמין D

כמו כן, בעיות שונות הקשורות לתפקודי הכבד והכליות גם הן שכיחות בגיל המבוגר ועלולות להשפיע על רמות הויטמין בגוף.

 

הפרעות ותסמינים הנגרמים עקב חוסר בויטמין D:

חוסר בויטמין D גורם להפרעות במשק הסידן והזרחן (רמות סידן וזרחן נמוכות בדם) בגוף המשפיעות בעיקר על מסת העצם. התסמינים השכיחים כוללים:

בילדים – רככת, עצירה בגדילת העצמות ושיניים לא חזקות.

במבוגרים – רכות עצמות (אוסטאומלסיה), עיוות בעצמות, שברים ופגיעה במבנה העצם עקב ספיגה לקויה של סידן ואצירה של זרחן.

תסמינים נוספים עקב חוסר של ויטמין D עלולים להתבטא בעוויתות או התכווצויות של השרירים והפרעות במערכת הלב וכלי הדם.

בנוסף, חוסר בויטמין D עלול להעלות את הסיכון להתפתחות סוגי סרטן שונים ובעיקר סרטן הערמונית וסרטן השד.

 

עודף של ויטמין D (רעילות): 

רמות גבוהות של ויטמין D גורמות לעלייה ברמות הסידן בדם (היפרקלצמיה) אשר יכולות להביא לתסמינים כגון 

הפרשת סידן בשתן, בריחת סידן מהעצמות, שקיעת סידן בכליות (אבנים בכליות), הפרעות במערכת הלב וכלי הדם, ורטיגו, טינטוןים באוזניים ועוד.

רעילות של ויטמין D הינה נדירה אך עלולה להופיע עקב צריכה ממושכת (בתזונה או דרך תוספים) הגבוהה מ- 25000 יחב"ל (625 מק"ג) ביום.

חשוב לציין, כי אנשים הסובלים מהפרעות בתפקודי כליות עלולים לסבול מתסמיני רעילות עקב צריכה של תוסף ויטמין D גם במינונים נורמאליים.

רעילות של ויטמין D עלולה להתבטא בתסמינים כגון בחילות, הקאות, אובדן תיאבון, צמא מוגבר, שלשולים, גירויים עוריים ועוד.

 

מינון יומי מומלץ של ויטמין D לפי ה- RDA (RECOMMENDED DAILY ALLOWANCE):

  • מלידה ועד גיל שנה – 10 מק"ג (400 יחב"ל).

  • גילאים 1-70 שנים – 15 מק"ג (600 יחב"ל).

  • גילאים 70 ומעלה – 20 מק"ג (800 יחב"ל).

  • נשים בהריון – 15 מק"ג (600 יחב"ל).

  • נשים מניקות – 15 מק"ג (600 יחב"ל).

הערת מערכת: בשנת 2015 פורסמו מספר ניירות עמדה הטוענים כי חישוב המינון היומי המומלץ (RDA) הינו שגוי וכי עליו לעמוד על כ 7000-9000 יחב"ל. 

צאו לשמש!

 


טווח מינון לטיפול בחוסר ויטמין D:

  • חוסר של ויטמין D בדם – במקרים של חוסר ויטמין D בדם ניתן לתת מינון של כ- 50,000 יחב"ל לשבוע במשך 6-12 שבועות. לעתים קיים צורך במינונים גבוהים יותר או בתקופות ממשוכות. בכל מקרה, מומלץ לבצע את הטיפול תחת פקוח רפואי ומעקב אחר רמות הויטמין בגוף.

  • מניעה של דלדול עצם (אוסטאופורוזיס) ושברים - נמצא כי ויטמין D במינון של 400-2000 יחב"ל ביום ביחד עם סידן מפחית את הסיכון להתפתחות של אוסטאופורוזיס ושברים.

  • דלדול עצם (אוסטאופורוזיס) – ויטמין D במינון של 400-800 יחב"ל ליום ביחד עם סידן מפחית את אובדן מסת העצם אצל אנשים הסובלים מדלדול עצם. יש להתאים את המינונים בהתאם לגיל, לצריכת הויטמין במזון ולמידת החשיפה לקרני השמש.

  • הפרעות ספיגה – נמצא כי מינון של 1000-1200 יחב"ל אצל חולי קרוהן ומינון של 1000-2000 יחב"ל אצל חולי סיסטיק פיברוזיס עשוי למנוע חוסר בויטמין D וכתוצאה למנוע רככת עצמות (אוסטאומלציה) אשר מהווה תסמין נפוץ בחולים אלו.

  • שפעת נמצא כי מינון של 1200 יחב"ל למשך 15-17 שבועות עשוי להפחית את הסיכון להדבקות בנגיף השפּעת.

  • סוכרת מסוג 2 – ויטמין D מעלה את רמות האינסולין. נמצא כי מינון של 1300 יחב"ל ביום למשך 3 חודשים עשוי לשפר את הרגישות לגלוקוז אצל חולי סוכרת מסוג 2. עם זאת, יש לעקוב אחר רמות הויטמין בדם על מנת למנוע רעילות.

  • מניעת סרטן שילוב של ויטמין D במינון של 1100 יחב"ל ביום ביחד עם סידן במינון של 1500 מ"ג ביום נמצא כמפחית סיכון להתפתחות סוגי סרטן שונים בעיקר אצל נשים וגברים בגיל המבוגר.

  • מניעת נפילות – חוסר בויטמין D נמצא כמעלה סיכון לנפילות בגיל המבוגר. מינון של 700-1000 יחב"ל ביום עשוי להקטין את הסיכון לנפילות.

  • טרשת נפוצה נמצא כי ויטמין D במינון של 400 יחב"ל כחלק ממולטי ויטמין עשוי להפחית את הסיכון להתפרצות של טרשת נפוצה או למנוע את התקפיה.

 

תגובות הדדיות עם תרופות / צמחי מרפא / תוספי תזונה

המידע על האינטראקציות זמין למנויי האתר בלבד. לרכישת מנוי לחצו כאן.


התוויות נגד לשימוש ב ויטמין D1-6:

  • מומלץ שלא ליטול תוסף של ויטמין D או להגביר את צריכתו בתזונה במקרים הבאים:

  • רגישות או אלרגיה ידועה לויטמין.

  • היפרקלצמיה (עודף של סידן בדם).

  • פעילות יתר של בלוטת יותרת המגן (פרתירואיד).

  • Chronic granulomatous - קבוצה של מחלות גנטיות אשר גורמות לליקוי בתאי מערכת החיסון ומשפיעות על חילוף החומרים של ויטמין D בכליות. מחלות אלו עלולות לגרום לעודף של ויטמין D ולהיפרקלצמיה (עודף סידן בדם).

  • הפרעות בתפקודי כליה – יש לנקוט זהירות בנטילת ויטמין D אצל אנשים הסובלים מהפרעות בתפקודי כליה. בנוסף, במקרים בהם קיים צורך בויטמין מומלץ ליטול אותו בצורתו הפעילה (Calcitriol), שכן הפגיעה הכליתית אינה מאפשרת את ההמרה של הויטמין לצורה זו.


מחקרים על ויטמין D:

 

 

בחלק זה תמצאו סקירות מחקרים על ויטמין D למידע השלם למנויים

 

מקורות:

 

מקורות כלליים לכל המידע מלבד התגובות ההדדיות

 

  1. Stargrove M B, Treasure J, McKee D. L, Herb, Nutrient, and Drug Interactions, Elsevier, 2008. pp 399-422.
  2. www.naturaldatabase.com – Vitamin D. found at - http://naturaldatabase.therapeuticresearch.com/nd/Search.aspx?cs=NONMP&s=ND&pt=100&id=929&ds=
  3. אודי בר, יפה שיר-רז, "המדריך הישראלי השלם לתוספי תזונה", כתר ספרים, 2005
  4. www. Naturalstandard.com – Vitamin D. found at - http://naturalstandard.com/databases/herbssupplements/vitamind.asp
  5. מוריי מייקל ט., פיז'ורנו ג'וזף א., "אנציקלופדיה לרפואה טבעית", אור-עם, 1995
  6. National Academy of Sciences. Institute of Medicine. Food and Nutrition Board
  7. DRI table for DRI tables for recommended dietary allowances (RDA). found at -  http://www.iom.edu/Activities/Nutrition/SummaryDRIs/DRI-Tables.aspx
  8. U.S. Institutes Of Health – Office Of Dietary Supplements – RDA tables. found at http://ods.od.nih.gov/Health_Information/Dietary_Reference_Intakes.aspx
  9. Patrick Holford, "Special Report: Supplements – Optimum Daily Allowances". found at - http://www.patrickholford.com/index.php/advice/betterhealtharticle/138/

 

מקורות לתגובות ההדדיות

 

  1. Lindh JD, Björkhem-Bergman L, Eliasson E. Vitamin D and drug-metabolising enzymes. Photochem Photobiol Sci. 2012 Dec;11(12):1797-801. https://pubmed.ncbi.nlm.nih.gov/22903070/
  2. Aloia JF, Li-Ng M, Pollack S. Statins and vitamin D. Am J Cardiol. 2007 Oct 15;100(8):1329–1329. https://pubmed.ncbi.nlm.nih.gov/17920383
  3. Ertugrul DT, Yavuz B, Cil H, Ata N, et al. STATIN-D study: comparison of the influences of rosuvastatin and fluvastatin treatment on the levels of 25 hydroxyvitamin D. Cardiovasc Ther. 2011 Apr;29(2):146–52. https://pubmed.ncbi.nlm.nih.gov/20370794
  4. Glueck CJ, Budhani SB, Masineni SS, et al. Vitamin D deficiency, myositis-myalgia, and reversible statin intolerance. Curr Med Res Opin. 2011 Sep;27(9):1683–90. https://pubmed.ncbi.nlm.nih.gov/21728907
  5. Liberopoulos EN, Makariou SE, Moutzouri E, Kostapanos MS, Challa A, Elisaf M. Effect of simvastatin/ezetimibe 10/10 mg versus simvastatin 40 mg on serum vitamin D levels. J Cardiovasc Pharmacol Ther. 2013 May;18(3):229–33. https://pubmed.ncbi.nlm.nih.gov/23288870
  6. Makariou SE, Liberopoulos EN, Agouridis AP, Challa A, Elisaf M. Effect of rosuvastatin monotherapy and in combination with fenofibrate or omega-3 fatty acids on serum vitamin D levels. J Cardiovasc Pharmacol Ther. 2012 Dec;17(4):382–6. https://pubmed.ncbi.nlm.nih.gov/22431864
  7. Ott C, Raff U, Schneider MP, Titze SI, Schmieder RE. 25-hydroxyvitamin D insufficiency is associated with impaired renal endothelial function and both are improved with rosuvastatin treatment. Clin Res Cardiol. 2013 Apr;102(4):299–304. https://pubmed.ncbi.nlm.nih.gov/23262496
  8. Pérez-Castrillón JL, Abad L, Vega G, et al. Effect of atorvastatin on bone mineral density in patients with acute coronary syndrome. Eur Rev Med Pharmacol Sci. 2008;12(2):83–8. https://pubmed.ncbi.nlm.nih.gov/18575157
  9. Sathyapalan T, Shepherd J, Arnett C, Coady A-M, Kilpatrick ES, Atkin SL. Atorvastatin increases 25-hydroxy vitamin D concentrations in patients with polycystic ovary syndrome. Clin Chem. 2010 Nov;56(11):1696–700. https://pubmed.ncbi.nlm.nih.gov/20817794
  10. Yavuz B, Ertugrul DT, Cil H, et al. Increased levels of 25 hydroxyvitamin D and 1,25-dihydroxyvitamin D after rosuvastatin treatment: a novel pleiotropic effect of statins? Cardiovasc Drugs Ther. 2009 Aug;23(4):295–9. https://pubmed.ncbi.nlm.nih.gov/19543962
  11. Wu Z, Camargo CA Jr, Khaw K-T, Waayer D, Lawes CMM, Toop L, et al. Effects of vitamin D supplementation on adherence to and persistence with long-term statin therapy: Secondary analysis from the randomized, double-blind, placebo-controlled ViDA study. Atherosclerosis. 2018 Jun;273:59–66. https://pubmed.ncbi.nlm.nih.gov/29684661
  12. Schwartz JB. Effects of vitamin D supplementation in atorvastatin-treated patients: a new drug interaction with an unexpected consequence. Clin Pharmacol Ther. 2009 Feb;85(2):198-203. https://www.ncbi.nlm.nih.gov/pubmed/18754003
  13. Catalano A, Morabito N, Basile G, Cucinotta D, Lasco A. Calcifediol improves lipid profile in osteopenicatorvastatin-treated postmenopausal women. Eur J Clin Invest. 2015 Feb;45(2):144–9. https://pubmed.ncbi.nlm.nih.gov/25483366
  14. Kane L, Moore K, L?tjohann D, Bikle D, Schwartz JB. Vitamin D3 effects on lipids differ in statin and non-statin-treated humans: superiority of free 25-OH D levels in detecting relationships. J Clin Endocrinol Metab. 2013 Nov;98(11):4400–9. https://pubmed.ncbi.nlm.nih.gov/24030939
  15. Qin XF, Zhao LS, Chen WR, Yin DW, Wang H. Effects of vitamin D on plasma lipid profiles in statin-treated patients with hypercholesterolemia: A randomized placebo-controlled trial. Clin Nutr. 2015 Apr;34(2):201–6. https://pubmed.ncbi.nlm.nih.gov/24844869
  16. Buettner C, Nir R-R, Bertisch SM, Bernstein C, Schain A, Mittleman MA, et al. Simvastatin and vitamin D for migraine prevention: A randomized, controlled trial. Ann Neurol. 2015 Dec;78(6):970–81. https://pubmed.ncbi.nlm.nih.gov/26418341
  17. Kajinami K, Takekoshi N, Matsui S, Kanemitsu S, Okubo S, Kanayama S, et al. Effect of pretreatment vitamin D levels on in vivo effects of atorvastatin on bone metabolism in patients with heterozygous familial hypercholesterolemia. Am J Cardiol 2003 Nov 1;92(9):1113–6. https://pubmed.ncbi.nlm.nih.gov/14583368
  18. Singla M, Rastogi A, Aggarwal AN, Bhat OM, Badal D, Bhansali A. Vitamin D supplementation improves simvastatin-mediated decline in exercise performance: A randomized double-blind placebo-controlled study. J Diabetes. 2017 Dec;9(12):1100–6. https://pubmed.ncbi.nlm.nih.gov/28233459
  19. Hileman CO, Tangpricha V, Sattar A, McComsey GA. Baseline Vitamin D Deficiency Decreases the Effectiveness of Statins in HIV-Infected Adults on Antiretroviral Therapy. J Acquir Immune Defic Syndr. 2017 Apr 15;74(5):539–47. https://pubmed.ncbi.nlm.nih.gov/28045766
  20. Yuste C, Quiroga B, de Vinuesa SG, et al. The effect of some medications given to CKD patients on vitamin D levels. Nefrologia. 2015;35(2):150-6. https://pubmed.ncbi.nlm.nih.gov/26300508/
  21. Sanchis-Gomar F, Salvagno GL, Lippi G. Inhibition of xanthine oxidase and exercise on serum uric acid, 25(OH)D3, and calcium concentrations. Clin Lab. 2014;60(8):1409-11. https://pubmed.ncbi.nlm.nih.gov/25185430/
  22. Vanholder R, Patel S, Hsu CH. Effect of uric acid on plasma levels of 1,25(OH)2D in renal failure. J Am Soc Nephrol. 1993 Oct;4(4):1035-8. PMID: 8286711. https://pubmed.ncbi.nlm.nih.gov/8286711/
  23. Takahashi S, Yamamoto T, Moriwaki Y, Tsutsumi Z, Yamakita J, Higashino K. Decreased serum concentrations of 1,25(OH)2-vitamin D3 in patients with gout. Metabolism. 1998 Mar;47(3):336-8. doi: 10.1016/s0026-0495(98)90267-0. PMID: 9500573. https://pubmed.ncbi.nlm.nih.gov/9500573/
  24. Wei JT, Gross M, Jaffe CA et al. Androgen deprivation therapy for prostate cancer results in significant loss of bone density. Urology 1999;54:607-611. https://pubmed.ncbi.nlm.nih.gov/10510915/
  25. Kiratli BJ, Srinivas S, Perkash I, Terris MK. Progressive decrease in bone density over 10 years of androgen deprivation therapy in patients with prostate cancer. Urology 2001;57:127-132. https://pubmed.ncbi.nlm.nih.gov/11164157/
  26. Daniell HW. Osteoporosis due to androgen deprivation therapy in men with prostate cancer. Urology 2001;58:101-107. https://pubmed.ncbi.nlm.nih.gov/11502461/
  27. Basaria S, Lieb J 2nd, Tang AM et al. Long-term effects of androgen deprivation therapy in prostate cancer patients. Clin Endocrinol (Oxf) 2002;56:779-786. https://pubmed.ncbi.nlm.nih.gov/12072048/
  28. Chen Z, Maricic M, Nguyen P et al. Low bone density and high percentage of body fat among men who were treated with androgen deprivation therapy for prostate carcinoma. Cancer 2002;95:2136-2144. https://pubmed.ncbi.nlm.nih.gov/12412167/
  29. Smith MR. Osteoporosis during androgen deprivation therapy for prostate cancer. Urology 2002;60:79-85; discussion 86. https://pubmed.ncbi.nlm.nih.gov/12231056/
  30. Mittan D, Lee S, Miller E et al. Bone loss following hypogonadism in men with prostate cancer treated with GnRH analogs. J Clin Endocrinol Metab 2002;87:3656-3661. https://pubmed.ncbi.nlm.nih.gov/12161491/
  31. Diamond TH, Higano CS, Smith MR et al. Osteoporosis in men with prostate carcinoma receiving androgen-deprivation therapy: recommendations for diagnosis and therapies. Cancer 2004;100(5):892-899. https://pubmed.ncbi.nlm.nih.gov/14983482/
  32. Oefelein MG, Ricchuiti V, Conrad W et al. Skeletal fracture associated with androgen suppression induced osteoporosis: the clinical incidence and risk factors for patients with prostate cancer. J Urol 2001;166:1724-1728. https://pubmed.ncbi.nlm.nih.gov/11586210/
  33. Hatano T, Oishi Y, Furuta A et al. Incidence of bone fracture in patients receiving luteinizing hormone–releasing hormone agonists for prostate cancer. BJU Int 2000;86:449-452. https://pubmed.ncbi.nlm.nih.gov/10971270/
  34. Townsend MF, Sanders WH, Northway RO, Graham SD Jr. Bone fractures associated with luteinizing hormone–releasing hormone agonists used in the treatment of prostate carcinoma. Cancer 1997;79:545-550. https://pubmed.ncbi.nlm.nih.gov/9028366/
  35. Higano CS. Management of bone loss in men with prostate cancer. J Urol 2003;170:S59-S63; discussion S64. https://pubmed.ncbi.nlm.nih.gov/14610412/
  36. Yao P, Bennett D, Mafham M, Lin X, Chen Z, Armitage J, Clarke R. Vitamin D and Calcium for the Prevention of Fracture: A Systematic Review and Meta analysis. JAMA Netw Open. 2019 Dec 2;2(12):e1917789. https://pubmed.ncbi.nlm.nih.gov/31860103/
  37. Mennen-Winchell LJ, Grigoriev V, Alpert P, Dos Santos H, Tonstad S. Determinants of vitamin D levels in men receiving androgen deprivation therapy for prostate cancer. J Am Assoc Nurse Pract. 2015 Jan;27(1):39-47. https://pubmed.ncbi.nlm.nih.gov/24729531/
  38. Datta M, Schwartz GG. Calcium and vitamin D supplementation during androgen deprivation therapy for prostate cancer: a critical review. Oncologist. 2012;17(9):1171-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448410/
  39. Smith MR, McGovern FJ, Zietman AL et al. Pamidronate to prevent bone loss during androgen-deprivation therapy for prostate cancer. N Engl J Med 2001;345:948-955. https://pubmed.ncbi.nlm.nih.gov/11575286/
  40. Xu Z, Jing X, Li G, Sun J, Guo H, Hu Y, Sun F, Wen X, Chen F, Wang T, Lu XP.Valproate decreases vitamin D levels in pediatric patients with epilepsy.Seizure. 2019 Oct;71:60-65. https://pubmed.ncbi.nlm.nih.gov/31207394/
  41. Fernandez H, Mohammed HT, Patel T. Vitamin D supplementation for bone health in adults with epilepsy: A systematic review. Epilepsia. 2018 Apr;59(4):885-896. https://pubmed.ncbi.nlm.nih.gov/29399794/
  42. Teagarden DL, Meador KJ, Loring DW. Low vitamin D levels are common in patients with epilepsy. Epilepsy Res. 2014 Oct;108(8):1352-6. https://pubmed.ncbi.nlm.nih.gov/25060996/
  43. Fong CY, Riney CJ. Vitamin D deficiency among children with epilepsy in South Queensland. J Child Neurol. 2014;29(3):368–73. https://pubmed.ncbi.nlm.nih.gov/23340082/
  44. Menon B, Harinarayan CV. The effect of anti epileptic drug therapy on serum 25-hydroxyvitamin D and parameters of calcium and bone metabolism--a longitudinal study. Seizure. 2010 Apr;19(3):153-8. https://pubmed.ncbi.nlm.nih.gov/20144552/
  45. Tjellesen L, Christiansen C. Serum vitamin D metabolites in epileptic patients treated with 2 different anti-convulsants. Acta Neurol Scand. 1982 Sep;66(3):335-41. https://pubmed.ncbi.nlm.nih.gov/6982586/
  46. Collins N, Maher J, Cole M, Baker M, Callaghan N. A prospective study to evaluate the dose of vitamin D required to correct low 25-hydroxyvitamin D levels, calcium, and alkaline phosphatase in patients at risk of developing antiepileptic drug-induced osteomalacia. Q J Med. 1991 Feb;78(286):113-22. https://pubmed.ncbi.nlm.nih.gov/1851568/
  47. Hunt PA, Wu-Chen ML, Handal NJ et al. Bone disease induced by anticonvulsant therapy and treatment with calcitriol (1,25-dihydroxyvitamin D3). Am J Dis Child 1986;140:715-718. https://pubmed.ncbi.nlm.nih.gov/3755005/
  48. Viraraghavan VR, Seth A, Aneja S, Singh R, Dhanwal D. Effect of high dose vitamin d supplementation on vitamin d nutrition status of pre-pubertal children on anti-epileptic drugs - A randomized controlled trial. Clin Nutr ESPEN. 2019 Feb;29:36-40. https://pubmed.ncbi.nlm.nih.gov/30661698/
  49. Lazzari AA, Dussault PM, Thakore-James M, et al. Prevention of bone loss and vertebral fractures in patients with chronic epilepsy--antiepileptic drug and osteoporosis prevention trial. Epilepsia. 2013 Nov;54(11):1997-2004. https://pubmed.ncbi.nlm.nih.gov/24010637/
  50. Misra A, Aggarwal A, Singh O, Sharma S. Effect of carbamazepine therapy on vitamin D and parathormone in epileptic children. Pediatr Neurol. 2010 Nov;43(5):320-4. https://pubmed.ncbi.nlm.nih.gov/20933174/
  51. Krishnamoorthy G, Nair R, Sundar U, Kini P, Shrivastava M. Early predisposition to osteomalacia in Indian adults on phenytoin or valproate monotherapy and effective prophylaxis by simultaneous supplementation with calcium and 25-hydroxy vitamin D at recommended daily allowance dosage: a prospective study. Neurol India. 2010 Mar-Apr;58(2):213-9. https://pubmed.ncbi.nlm.nih.gov/20508338/
  52. Mikati MA, Dib L, Yamout B, et al. Two randomized vitamin D trials in ambulatory patients on anticonvulsants: impact on bone. Neurology. 2006 Dec 12;67(11):2005-14. https://pubmed.ncbi.nlm.nih.gov/17159108/
  53. Nicolaidou P, Georgouli H, Kotsalis H, et al. Effects of anticonvulsant therapy on vitamin D status in children: prospective monitoring study. J Child Neurol. 2006 Mar;21(3):205-9. PubMed PMID: 16901421. https://pubmed.ncbi.nlm.nih.gov/16901421/
  54. Pedrera JD, Canal ML, Carvajal J, Postigo S, Villa LF, Hernández ER, Rico H. Influence of vitamin D administration on bone ultrasound measurements in patients on anticonvulsant therapy. Eur J Clin Invest. 2000 Oct;30(10):895-9. PubMed PMID: 11029604. https://pubmed.ncbi.nlm.nih.gov/11029604/
  55. Jekovec-Vrhovsek M, Kocijancic A, Prezelj J. Effect of vitamin D and calcium on bone mineral density in children with CP and epilepsy in full-time care. Dev Med Child Neurol. 2000 Jun;42(6):403-5. PubMed PMID: 10875526. https://pubmed.ncbi.nlm.nih.gov/10875526/
  56. Tjellesen L, Gotfredsen A, Christiansen C. Different actions of vitamin D2 and D3 on bone metabolism in patients treated with phenobarbitone/phenytoin. Calcif Tissue Int. 1985 May;37(3):218-22. https://pubmed.ncbi.nlm.nih.gov/2990641/
  57. Mosekilde L, Hansen HH, Christensen MS, et al. Fractional intestinal calcium absorption in epileptics on anticonvulsant therapy. Short-term effect of 1,25-dihydroxycholecalciferol and 25-hydroxycholecalciferol. Acta Med Scand. 1979;205(5):405-9. https://pubmed.ncbi.nlm.nih.gov/443080/
  58. Liakakos D, Papadopoulos Z, Vlachos P, Boviatsi E, Varonos DD. Serum alkaline phosphatase and urinary hydroxyproline values in children receiving phenobarbital with and without vitamin D. J Pediatr. 1975 Aug;87(2):291-6. PubMed PMID: 807698. https://pubmed.ncbi.nlm.nih.gov/807698/
  59. Christiansen C, Rodbro P, Sjö O. "Anticonvulsant action" of vitamin D in epileptic patients? A controlled pilot study. Br Med J. 1974 May 4;2(5913):258-9. PubMed PMID: 4207965; PubMed Central PMCID: PMC1610507. https://pubmed.ncbi.nlm.nih.gov/4207965/
  60. Christiansen C, Rodbro P, Lund M. Effect of vitamin D on bone mineral mass in normal subjects and in epileptic patients on anticonvulsants: a controlled therapeutic trial. Br Med J. 1973 Apr 28;2(5860):208-9. https://pubmed.ncbi.nlm.nih.gov/4573205/
  61. Christiansen C, Rodbro P, Lund M. Incidence of anticonvulsant osteomalacia and effect of vitamin D: controlled therapeutic trial. Br Med J. 1973 Dec 22;4(5894):695-701. https://pubmed.ncbi.nlm.nih.gov/4776883
  62. Christiansen C, Rodbro P. Effect of vitamin D2 on serum phenytoin. A controlled therapeutical trial. Acta Neurol Scand. 1974;50(5):661-4. PubMed PMID: 4611130. https://pubmed.ncbi.nlm.nih.gov/4611130/
  63. Røodbro P, Christiansen C, Lund M. Subjective symptoms in epileptic patients on anticonvulsant drugs. A controlled therapeutic trial on the effect of vitamin d. Acta Neurol Scand. 1975 Aug;52(2):87-93. https://pubmed.ncbi.nlm.nih.gov/1098358/
  64. Addy DP. Rickets associated with anticonvulsant therapy in children with tuberous sclerosis. Arch Dis Child. 1976 Dec;51(12):972-4. https://pubmed.ncbi.nlm.nih.gov/1087867/
  65. Glerup H, Eriksen EF. D-vitaminmangel. Let at diagnosticere, ofte overset [Vitamin D deficiency. Easy to diagnose, often overlooked]. Ugeskr Laeger. 1999 Apr 26;161(17):2515-21. Danish. https://pubmed.ncbi.nlm.nih.gov/10327872/
  66. Matsuda I, Takekoshi Y, Tanaka M, et al. Pseudohypoparathyroidism type II and anticonvulsant rickets. Eur J Pediatr. 1979;132(4):303-8. https://pubmed.ncbi.nlm.nih.gov/230052/
  67. Abdel-Wahab AF, Afify MA, Mahfouz AM, Shahzad N, Bamagous GA, Al Ghamdi SS. Vitamin D enhances antiepileptic and cognitive effects of lamotrigine in pentylenetetrazole-kindled rats. Brain Res. 2017 Oct 15;1673:78-85. https://pubmed.ncbi.nlm.nih.gov/28818511/
  68. Garip Ustaoglu S, Evis Z, Ilbay G, Boskey AL, Severcan F. Side-Effects of Convulsive Seizures and Anti-Seizure Therapy on Bone in a Rat Model of Epilepsy. Appl Spectrosc. 2018 May;72(5):689-705. https://pubmed.ncbi.nlm.nih.gov/28905646/
  69. Levison JC, Kent GN, Worth GK, Retallack RW. Anticonvulsant induced increase in 25-hydroxy-vitamin D3-1alpha-hydroxylase. Endocrinology. 1977 Dec;101(6):1898-901. https://pubmed.ncbi.nlm.nih.gov/588328/
  70. Sulimovici S, Roginsky MS. Inhibition of rat liver calciferol 25-hydroxylase activity with anticonvulsant drugs. Life Sci. 1977 Nov 1;21(9):1317-22 https://pubmed.ncbi.nlm.nih.gov/200813/
  71. Atbinici H, Sipahioğlu S, Aksoy N, Baykara İ, Işıkan UE. Effects of salmon calcitonin treatment on serum and synovial fluid bone formation and resorption markers in osteoporosis patients. Acta Orthop Traumatol Turc. 2015;49(2):160‐165 https://pubmed.ncbi.nlm.nih.gov/26012937/
  72. Bianda T, Linka A, Junga G, et al. Prevention of osteoporosis in heart transplant recipients: a comparison of calcitriol with calcitonin and pamidronate. Calcif Tissue Int. 2000;67(2):116‐121. https://pubmed.ncbi.nlm.nih.gov/10920215/
  73. Binkley N, Bolognese M, Sidorowicz-Bialynicka A, et al. A phase 3 trial of the efficacy and safety of oral recombinant calcitonin: the Oral Calcitonin in Postmenopausal Osteoporosis (ORACAL) trial. J Bone Miner Res. 2012;27(8):1821‐1829. https://pubmed.ncbi.nlm.nih.gov/22437792/
  74. Chesnut CH 3rd, Silverman S, Andriano K, et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med. 2000;109(4):267‐276. https://pubmed.ncbi.nlm.nih.gov/10996576/
  75. Cremer J, Strüber M, Wagenbreth I, et al. Progression of steroid-associated osteoporosis after heart transplantation. Ann Thorac Surg. 1999;67(1):130‐133. https://pubmed.ncbi.nlm.nih.gov/10086537/
  76. Gilfraguas L, Guadalix S, Martinez G, et al. Bone loss after heart transplant: effect of alendronate, etidronate, calcitonin, and calcium plus vitamin D3. Prog Transplant. 2012;22(3):237‐243. https://pubmed.ncbi.nlm.nih.gov/22951500/
  77. Gruber HE, Grigsby J, Chesnut Ill CH. Osteoblast numbers after calcitonin therapy: a retrospective study of paired biopsies obtained during long-term calcitonin therapy in postmenopausal osteoporosis. Calcif Tissue Int. 2000;66(1):29‐34. https://pubmed.ncbi.nlm.nih.gov/10602841/
  78. Gürlek A, Bayraktar M, Gedik O. Comparison of calcitriol treatment with etidronate-calcitriol and calcitonin-calcitriol combinations in Turkish women with postmenopausal osteoporosis: a prospective study. Calcif Tissue Int. 1997;61(1):39‐43. https://link.springer.com/article/10.1007/s002239900291
  79. Harju E, Punnonen R, Tuimala R, Salmi J, Paronen I. Vitamin D and calcitonin treatment in patients with femoral neck fracture: a prospective controlled clinical study. J Int Med Res. 1989;17(3):226‐242. https://pubmed.ncbi.nlm.nih.gov/2548905/
  80. Hizmetli S, Elden H, Kaptanoglu E, Nacitarhan V, Kocagil S. The effect of different doses of calcitonin on bone mineral density and fracture risk in postmenopausal osteoporosis. Int J Clin Pract. 1998;52(7):453‐455. https://pubmed.ncbi.nlm.nih.gov/10622084/
  81. Kaskani E, Lyritis GP, Kosmidis C, et al. Effect of intermittent administration of 200 IU intranasal salmon calcitonin and low doses of 1alpha(OH) vitamin D3 on bone mineral density of the lumbar spine and hip region and biochemical bone markers in women with postmenopausal osteoporosis: a pilot study. Clin Rheumatol. 2005;24(3):232‐238. https://pubmed.ncbi.nlm.nih.gov/15647969/
  82. Peichl P, Marteau R, Griesmacher A, et al. Salmon calcitonin nasal spray treatment for postmenopausal women after hip fracture with total hip arthroplasty. J Bone Miner Metab. 2005;23(3):243‐252. https://pubmed.ncbi.nlm.nih.gov/15838628/
  83. Sambrook P, Birmingham J, Kelly P, et al. Prevention of corticosteroid osteoporosis. A comparison of calcium, calcitriol, and calcitonin. N Engl J Med. 1993;328(24):1747‐1752. https://pubmed.ncbi.nlm.nih.gov/7684512/
  84. Srivastava AK, Libanati C, Hohmann O, Kriegman A, Baylink DJ. Acute effects of calcitonin nasal spray on serum C-telopeptide of type 1 collagen (CTx) levels in elderly osteopenic women with increased bone turnover. Calcif Tissue Int. 2004;75(6):477‐481. https://pubmed.ncbi.nlm.nih.gov/15365658/
  85. Tankó LB, Bagger YZ, Alexandersen P, et al. Safety and efficacy of a novel salmon calcitonin (sCT) technology-based oral formulation in healthy postmenopausal women: acute and 3-month effects on biomarkers of bone turnover. J Bone Miner Res. 2004;19(9):1531‐1538. https://pubmed.ncbi.nlm.nih.gov/15312255/
  86. Tascioglu F, Colak O, Armagan O, Alatas O, Oner C. The treatment of osteoporosis in patients with rheumatoid arthritis receiving glucocorticoids: a comparison of alendronate and intranasal salmon calcitonin. Rheumatol Int. 2005;26(1):21‐29. https://pubmed.ncbi.nlm.nih.gov/15688191/
  87. Tekeoğlu I, Adak B, Budancamanak M, Demirel A, Ediz L. Comparison of cyclic and continuous calcitonin regimens in the treatment of postmenopausal osteoporosis. Rheumatol Int. 2005;26(2):157‐161. https://pubmed.ncbi.nlm.nih.gov/15660234/
  88. Thamsborg G, Storm TL, Daugaard H, Schifter S, Sørensen OH. Circulating levels of calciotropic hormones during treatment with nasal salmon calcitonin. Acta Endocrinol (Copenh). 1991;125(2):127‐131. https://pubmed.ncbi.nlm.nih.gov/1897329/
  89. Tóth E, Csupor E, Mészáros S, et al. The effect of intranasal salmon calcitonin therapy on bone mineral density in idiopathic male osteoporosis without vertebral fractures--an open label study. Bone. 2005;36(1):47‐51. https://pubmed.ncbi.nlm.nih.gov/15664001/
  90. Wang SX, Li H. Salmon calcitonin in prevention of osteoporosis in maintenance dialysis patients. Chin Med J (Engl). 2008;121(14):1280‐1284. https://pubmed.ncbi.nlm.nih.gov/18713548/
  91. Ushiroyama T, Ikeda A, Sakai M, Higashiyama T, Ueki M. Effects of the combined use of calcitonin and 1 alpha-hydroxycholecalciferol on vertebral bone loss and bone turnover in women with postmenopausal osteopenia and osteoporosis: a prospective study of long-term and continuous administration with low dose calcitonin. Maturitas. 2001;40(3):229‐238. https://pubmed.ncbi.nlm.nih.gov/11731184/
  92. Amin S, Lavalley MP, Simms RW, Felson DT. The comparative efficacy of drug therapies used for the management of corticosteroid-induced osteoporosis: a meta-regression. J Bone Miner Res. 2002;17(8):1512‐1526. https://pubmed.ncbi.nlm.nih.gov/12162505/
  93. Richy F, Schacht E, Bruyere O, et al. Vitamin D analogs versus native vitamin D in preventing bone loss and osteoporosis-related fractures: a comparative meta-analysis. Calcif Tissue Int. 2005 Mar;76(3):176-86. https://pubmed.ncbi.nlm.nih.gov/15692726/
  94. Wang J, Li H. Treatment of Glucocorticoid-Induced Osteoporosis with Bisphosphonates Alone, Vitamin D Alone or a Combination Treatment in Eastern Asians: A Meta-Analysis. Curr Pharm Des. 2019;25(14):1653-1662. https://pubmed.ncbi.nlm.nih.gov/31218954/
  95. Yang Y, Qiu S, Tang X, et al. Efficacy and Safety of Different Bisphosphonates for Bone Loss Prevention in Kidney Transplant Recipients: A Network Meta-Analysis of Randomized Controlled Trials. Chin Med J (Engl). 2018 Apr 5;131(7):818-828. https://pubmed.ncbi.nlm.nih.gov/29578126/
  96. Brandão CM, Lima MG, Silva AL, et al. Treatment of postmenopausal osteoporosis in women: a systematic review. Cad Saude Publica. 2008;24 Suppl 4:s592-606. https://pubmed.ncbi.nlm.nih.gov/18797733/
  97. Cecilia D, Jódar E, Fernández C, Resines C, Hawkins F. Effect of alendronate in elderly patients after low trauma hip fracture repair. Osteoporos Int. 2009 Jun;20(6):903-10. https://pubmed.ncbi.nlm.nih.gov/18956132/
  98. Cesareo R, Di Stasio E, Vescini F, et al. Effects of alendronate and vitamin D in patients with normocalcemic primary hyperparathyroidism. Osteoporos Int. 2015 Apr;26(4):1295-302. https://pubmed.ncbi.nlm.nih.gov/25524023/
  99. Doria C, Mosele GR, Solla F, et al. Treatment of osteoporosis secondary to hypogonadism in prostate cancer patients: a prospective randomized multicenter international study with denosumab vs. alendronate. Minerva Urol Nefrol. 2017 Jun;69(3):271-277. https://pubmed.ncbi.nlm.nih.gov/27813398/
  100. Golden NH, Iglesias EA, Jacobson MS, et al. Alendronate for the treatment of osteopenia in anorexia nervosa: a randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab. 2005 Jun;90(6):3179-85. https://pubmed.ncbi.nlm.nih.gov/15784715/
  101. Heervä E, Huilaja L, Leinonen P, Peltonen S, Peltonen J. Follow-up of six patients with neurofibromatosis 1-related osteoporosis treated with alendronate for 23 months. Calcif Tissue Int. 2014 Jun;94(6):608-12. https://pubmed.ncbi.nlm.nih.gov/24390519/
  102. Khan A, Dubois S, Khan AA, et al. A randomized, double-blind, placebo-controlled study to evaluate the effects of alendronate on bone mineral density and bone remodelling in perimenopausal women with low bone mineral density. J Obstet Gynaecol Can. 2014 Nov;36(11):976-982. https://pubmed.ncbi.nlm.nih.gov/25574674/
  103. Kim KJ, Min YK, Koh JM, et al; VALUE study group. Efficacy and safety of weekly alendronate plus vitamin D₃ 5600 IU versus weekly alendronate alone in Korean osteoporotic women: 16-week randomized trial. Yonsei Med J. 2014 May;55(3):715-24. https://pubmed.ncbi.nlm.nih.gov/24719139/
  104. Liao EY, Zhang ZL, Xia WB, et al. Calcifediol (25-hydroxyvitamin D) improvement and calcium-phosphate metabolism of alendronate sodium/vitamin D3 combination in Chinese women with postmenopausal osteoporosis: a post hoc efficacy analysis and safety reappraisal. BMC Musculoskelet Disord. 2018 Jul 3;19(1):210. https://pubmed.ncbi.nlm.nih.gov/29970059/
  105. McComsey GA, Kendall MA, Tebas P, et al. Alendronate with calcium and vitamin D supplementation is safe and effective for the treatment of decreased bone mineral density in HIV. AIDS. 2007 Nov 30;21(18):2473-82. https://pubmed.ncbi.nlm.nih.gov/18025884/
  106. Millonig G, Graziadei IW, Eichler D, et al. Alendronate in combination with calcium and vitamin D prevents bone loss after orthotopic liver transplantation: a prospective single-center study. Liver Transpl. 2005 Aug;11(8):960-6. https://pubmed.ncbi.nlm.nih.gov/16035083/
  107. Mondy K, Powderly WG, Claxton SA, et al. Alendronate, vitamin D, and calcium for the treatment of osteopenia/osteoporosis associated with HIV infection. J Acquir Immune Defic Syndr. 2005 Apr 1;38(4):426-31. https://pubmed.ncbi.nlm.nih.gov/15764959/
  108. Orimo H, Nakamura T, Fukunaga M, et al; A-TOP (Adequate Treatment of Osteoporosis) research group. Effects of alendronate plus alfacalcidol in osteoporosis patients with a high risk of fracture: the Japanese Osteoporosis Intervention Trial (JOINT) - 02. Curr Med Res Opin. 2011 Jun;27(6):1273-84. https://pubmed.ncbi.nlm.nih.gov/21554143/
  109. Paksu MS, Vurucu S, Karaoglu A, et al. Osteopenia in children with cerebral palsy can be treated with oral alendronate. Childs Nerv Syst. 2012 Feb;28(2):283-6. https://pubmed.ncbi.nlm.nih.gov/21928064/
  110. Ralston SH, Binkley N, Boonen S, et al; FOCUS-D (FOSAVANCE vs. Standard Care-Use and Study of Vitamin D) Trial. Randomized trial of alendronate plus vitamin D3 versus standard care in osteoporotic postmenopausal women with vitamin D insufficiency. Calcif Tissue Int. 2011 Jun;88(6):485-94. https://pubmed.ncbi.nlm.nih.gov/21479913/
  111. Recker R, Lips P, Felsenberg D, et al. Alendronate with and without cholecalciferol for osteoporosis: results of a 15-week randomized controlled trial. Curr Med Res Opin. 2006 Sep;22(9):1745-55. https://pubmed.ncbi.nlm.nih.gov/16968578/
  112. Rhee Y, Song K, Park S, et al. Efficacy of a combined alendronate and calcitriol agent (Maxmarvil®) in Korean postmenopausal women with early breast cancer receiving aromatase inhibitor: a double-blind, randomized, placebo-controlled study. Endocr J. 2013;60(2):167-72. https://pubmed.ncbi.nlm.nih.gov/23064476/
  113. Ringe JD, Farahmand P, Schacht E, Rozehnal A. Superiority of a combined treatment of Alendronate and Alfacalcidol compared to the combination of Alendronate and plain vitamin D or Alfacalcidol alone in established postmenopausal or male osteoporosis (AAC-Trial). Rheumatol Int. 2007 Mar;27(5):425-34. https://pubmed.ncbi.nlm.nih.gov/17216477/
  114. Saito K, Miyakoshi N, Matsunaga T, et al. Eldecalcitol improves muscle strength and dynamic balance in postmenopausal women with osteoporosis: an open-label randomized controlled study. J Bone Miner Metab. 2016 Sep;34(5):547-54. https://pubmed.ncbi.nlm.nih.gov/26209166/
  115. Sakai A, Ito M, Tomomitsu T, et al; e-ADVANCED Study Group. Efficacy of combined treatment with alendronate (ALN) and eldecalcitol, a new active vitamin D analog, compared to that of concomitant ALN, vitamin D plus calcium treatment in Japanese patients with primary osteoporosis. Osteoporos Int. 2015 Mar;26(3):1193-202. https://pubmed.ncbi.nlm.nih.gov/25592133/
  116. Sato Y, Iwamoto J, Kanoko T, Satoh K. Alendronate and vitamin D2 for prevention of hip fracture in Parkinson's disease: a randomized controlled trial. Mov Disord. 2006 Jul;21(7):924-9. https://pubmed.ncbi.nlm.nih.gov/16538619/
  117. Shapses SA, Kendler DL, Robson R, et al. Effect of alendronate and vitamin D₃ on fractional calcium absorption in a double-blind, randomized, placebo-controlled trial in postmenopausal osteoporotic women. J Bone Miner Res. 2011 Aug;26(8):1836-44. https://pubmed.ncbi.nlm.nih.gov/21448918/
  118. Songpatanasilp T, Rojanasthien S, Sugkraroek P, et al. Open-label study of treatment with alendronate sodium plus vitamin D in men and women with osteoporosis in Thailand. BMC Musculoskelet Disord. 2018 Nov 6;19(1):392. https://pubmed.ncbi.nlm.nih.gov/30400864/
  119. Stoch SA, Saag KG, Greenwald M, et al. Once-weekly oral alendronate 70 mg in patients with glucocorticoid-induced bone loss: a 12-month randomized, placebo-controlled clinical trial. J Rheumatol. 2009 Aug;36(8):1705-14. https://pubmed.ncbi.nlm.nih.gov/19487264/
  120. Tan DHS, Lee T, Raboud J, et al. Alendronate/Vitamin D for attenuating bone mineral density loss during antiretroviral initiation: a pilot randomized controlled trial. HIV Res Clin Pract. 2019 Dec;20(6):140-150. https://pubmed.ncbi.nlm.nih.gov/32106792/
  121. Tee SI, Yosipovitch G, Chan YC, et al. Prevention of glucocorticoid-induced osteoporosis in immunobullous diseases with alendronate: a randomized, double-blind, placebo-controlled study. Arch Dermatol. 2012 Mar;148(3):307-14. https://pubmed.ncbi.nlm.nih.gov/22105813/
  122. Yan Y, Wang W, Zhu H, et al. The efficacy and tolerability of once-weekly alendronate 70 mg on bone mineral density and bone turnover markers in postmenopausal Chinese women with osteoporosis. J Bone Miner Metab. 2009;27(4):471-8. https://pubmed.ncbi.nlm.nih.gov/19343272/
  123. Zhang ZL, Liao EY, Xia WB, et al. Alendronate sodium/vitamin D3 combination tablet versus calcitriol for osteoporosis in Chinese postmenopausal women: a 6-month, randomized, open-label, active-comparator-controlled study with a 6-month extension. Osteoporos Int. 2015 Sep;26(9):2365-74. https://pubmed.ncbi.nlm.nih.gov/26377424/
  124. Naylor KE, Jacques RM, Paggiosi M, et al. Response of bone turnover markers to three oral bisphosphonate therapies in postmenopausal osteoporosis: the TRIO study. Osteoporos Int. 2016 Jan;27(1):21-31. https://pubmed.ncbi.nlm.nih.gov/25990354/
  125. Bourke S, Bolland MJ, Grey A, et al. The impact of dietary calcium intake and vitamin D status on the effects of zoledronate. Osteoporos Int. 2013 Jan;24(1):349-54. https://pubmed.ncbi.nlm.nih.gov/22893357/
  126. Olmos JM, Hernández JL, Llorca J, et al. Effects of 25-hydroxyvitamin D3 therapy on bone turnover markers and PTH levels in postmenopausal osteoporotic women treated with alendronate. J Clin Endocrinol Metab. 2012 Dec;97(12):4491-7. https://pubmed.ncbi.nlm.nih.gov/23043189/
  127. Roux C, Binkley N, Boonen S, et al; FOCUS-D Investigators. Vitamin D status and bone mineral density changes during alendronate treatment in postmenopausal osteoporosis. Calcif Tissue Int. 2014 Feb;94(2):153-7. https://pubmed.ncbi.nlm.nih.gov/23912950/
  128. Buckley L, Guyatt G, Fink HA, et al. American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis. Arthritis Rheumatol. 2017 Aug;69(8):1521-1537. https://pubmed.ncbi.nlm.nih.gov/28585373/
  129. Binkley N, Ringe JD, Reed JI, et al. Alendronate/vitamin D3 70 mg/2800 IU with and without additional 2800 IU vitamin D3 for osteoporosis: results from the 24-week extension of a 15-week randomized, controlled trial. Bone. 2009 Apr;44(4):639-47. https://pubmed.ncbi.nlm.nih.gov/19185560/
  130. Minisola S, Marin F, Kendler DL, et al. Serum 25-hydroxy-vitamin D and the risk of fractures in the teriparatide versus risedronate VERO clinical trial. Arch Osteoporos. 2019 Jan 18;14(1):10. https://pubmed.ncbi.nlm.nih.gov/30659410/
  131. Barone A, Giusti A, Pioli G, et al. Secondary hyperparathyroidism due to hypovitaminosis D affects bone mineral density response to alendronate in elderly women with osteoporosis: a randomized controlled trial. J Am Geriatr Soc. 2007 May;55(5):752-7. https://pubmed.ncbi.nlm.nih.gov/17493196/
  132. Deane A, Constancio L, Fogelman I, Hampson G. The impact of vitamin D status on changes in bone mineral density during treatment with bisphosphonates and after discontinuation following long-term use in post-menopausal osteoporosis. BMC Musculoskelet Disord. 2007 Jan 10;8:3. https://pubmed.ncbi.nlm.nih.gov/17214897/
  133. Denker AE, Lazarus N, Porras A, Ramakrishnan R, Constanzer M, Scott BB, Chavez-Eng C, Woolf E, Maganti L, Larson P, Gottesdiener K, Wagner JA. Bioavailability of alendronate and vitamin D(3) in an alendronate/vitamin D(3) combination tablet. J Clin Pharmacol. 2011 Oct;51(10):1439-48. https://pubmed.ncbi.nlm.nih.gov/21148044/
  134. Bashutski JD, Eber RM, Kinney JS, et al. Teriparatide and osseous regeneration in the oral cavity. N Engl J Med. 2010;363(25):2396‐2405. https://pubmed.ncbi.nlm.nih.gov/20950166/
  135. Yamamoto T, Tsujimoto M, Hamaya E, Sowa H. Assessing the effect of baseline status of serum bone turnover markers and vitamin D levels on efficacy of teriparatide 20 μg/day administered subcutaneously in Japanese patients with osteoporosis. J Bone Miner Metab. 2013;31(2):199‐205. https://pubmed.ncbi.nlm.nih.gov/23135345/
  136. Aspenberg P, Malouf J, Tarantino U, et al. Effects of Teriparatide Compared with Risedronate on Recovery After Pertrochanteric Hip Fracture: Results of a Randomized, Active-Controlled, Double-Blind Clinical Trial at 26 Weeks. J Bone Joint Surg Am. 2016;98(22):1868‐1878. https://pubmed.ncbi.nlm.nih.gov/27852903/
  137. D'Amelio P, Tamone C, Sassi F, et al. Teriparatide increases the maturation of circulating osteoblast precursors. Osteoporos Int. 2012;23(4):1245‐1253. https://pubmed.ncbi.nlm.nih.gov/21617993/
  138. Dawson-Hughes B, Chen P, Krege JH. Response to teriparatide in patients with baseline 25-hydroxyvitamin D insufficiency or sufficiency. J Clin Endocrinol Metab. 2007;92(12):4630‐4636. https://pubmed.ncbi.nlm.nih.gov/17911178/
  139. Sethi BK, Chadha M, Modi KD, et al. Efficacy of teriparatide in increasing bone mineral density in postmenopausal women with osteoporosis--an Indian experience. J Assoc Physicians India. 2008;56:418‐424. https://pubmed.ncbi.nlm.nih.gov/18822620/
  140. Lasco A, Catalano A, Morabito N, et al. Adrenal effects of teriparatide in the treatment of severe postmenopausal osteoporosis. Osteoporos Int. 2011;22(1):299‐303. https://pubmed.ncbi.nlm.nih.gov/20309523/
  141. Eastell R, Nickelsen T, Marin F, et al. Sequential treatment of severe postmenopausal osteoporosis after teriparatide: final results of the randomized, controlled European Study of Forsteo (EUROFORS). J Bone Miner Res. 2009;24(4):726-736. https://pubmed.ncbi.nlm.nih.gov/19049337/
  142. Palermo A, Mangiameli G, Tabacco G, et al. PTH(1-34) for the Primary Prevention of Postthyroidectomy Hypocalcemia: The THYPOS Trial. J Clin Endocrinol Metab. 2016 Nov;101(11):4039-4045. https://pubmed.ncbi.nlm.nih.gov/27525532/
  143. Cosman F, Wermers RA, Recknor C, et al. Effects of teriparatide in postmenopausal women with osteoporosis on prior alendronate or raloxifene: differences between stopping and continuing the antiresorptive agent. J Clin Endocrinol Metab. 2009;94(10):3772-3780. https://pubmed.ncbi.nlm.nih.gov/19584192/
  144. Mazziotti G, Maffezzoni F, Doga M, Hofbauer LC, Adler RA, Giustina A. Outcome of glucose homeostasis in patients with glucocorticoid-induced osteoporosis undergoing treatment with bone active-drugs. Bone. 2014;67:175-180. https://pubmed.ncbi.nlm.nih.gov/25016963/
  145. Kung AW, Pasion EG, Sofiyan M, et al. A comparison of teriparatide and calcitonin therapy in postmenopausal Asian women with osteoporosis: a 6-month study. Curr Med Res Opin. 2006;22(5):929-937. https://pubmed.ncbi.nlm.nih.gov/16709314/
  146. Ste-Marie LG, Schwartz SL, Hossain A, Desaiah D, Gaich GA. Effect of teriparatide [rhPTH(1-34)] on BMD when given to postmenopausal women receiving hormone replacement therapy. J Bone Miner Res. 2006;21(2):283-291. https://pubmed.ncbi.nlm.nih.gov/16418784/
  147. Heaney RP, Watson P. Variability in the measured response of bone to teriparatide. Osteoporos Int. 2011;22(6):1703-1708. https://pubmed.ncbi.nlm.nih.gov/20827548/
  148. Boonen S, Marin F, Mellstrom D, et al. Safety and efficacy of teriparatide in elderly women with established osteoporosis: bone anabolic therapy from a geriatric perspective. J Am Geriatr Soc. 2006;54(5):782-789. https://pubmed.ncbi.nlm.nih.gov/16696744/
  149. Wermers RA, Recknor CP, Cosman F, Xie L, Glass EV, Krege JH. Effects of teriparatide on serum calcium in postmenopausal women with osteoporosis previously treated with raloxifene or alendronate. Osteoporos Int. 2008;19(7):1055-1065. https://pubmed.ncbi.nlm.nih.gov/18283386/
  150. Ettinger B, San Martin J, Crans G, Pavo I. Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate. J Bone Miner Res. 2004;19(5):745-751. https://pubmed.ncbi.nlm.nih.gov/15068497/
  151. Migliore A, Massafra U, Capuano A, Martin SM. Combined use of teriparatide and TNFalpha blockade: safety. Aging Clin Exp Res. 2007;19(3 Suppl):18-20. https://pubmed.ncbi.nlm.nih.gov/18180602/
  152. Finkelstein JS, Hayes A, Hunzelman JL, et al. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med. 2003;349(13):1216-1226. https://pubmed.ncbi.nlm.nih.gov/14500805/
  153. Matsumoto T, Shiraki M, Hagino H, Iinuma H, Nakamura T. Daily nasal spray of hPTH(1-34) for 3 months increases bone mass in osteoporotic subjects: a pilot study. Osteoporos Int. 2006;17(10):1532-1538. https://pubmed.ncbi.nlm.nih.gov/16767525/
  154. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434-1441. https://pubmed.ncbi.nlm.nih.gov/11346808/
  155. Shiraki M, Sugimoto T, Nakamura T. Effects of a single injection of teriparatide on bone turnover markers in postmenopausal women. Osteoporos Int. 2013;24(1):219‐226. https://pubmed.ncbi.nlm.nih.gov/23093347/
  156. Orwoll ES, Scheele WH, Paul S, et al. The effect of teriparatide [human parathyroid hormone (1-34)] therapy on bone density in men with osteoporosis. J Bone Miner Res. 2003;18(1):9-17. https://pubmed.ncbi.nlm.nih.gov/12510800/
  157. Cosman F, Dawson-Hughes B, Wan X, Krege JH. Changes in vitamin D metabolites during teriparatide treatment. Bone. 2012;50(6):1368‐1371. https://pubmed.ncbi.nlm.nih.gov/22426307/
  158. Body JJ, Gaich GA, Scheele WH, et al. A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1-34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2002;87(10):4528-4535. https://pubmed.ncbi.nlm.nih.gov/12364430/
  159. Licata AA. Osteoporosis, teriparatide, and dosing of calcium and vitamin D. N Engl J Med. 2005;352(18):1930-1931. https://pubmed.ncbi.nlm.nih.gov/15872215/
  160. Anastasilakis AD, Polyzos SA, Makras P, et al. Circulating semaphorin-4D and plexin-B1 levels in postmenopausal women with low bone mass: the 3-month effect of zoledronic acid, denosumab or teriparatide treatment. Expert Opin Ther Targets. 2015;19(3):299-306. https://pubmed.ncbi.nlm.nih.gov/25395071/
  161. Fujita T, Inoue T, Morii H, et al. Effect of an intermittent weekly dose of human parathyroid hormone (1-34) on osteoporosis: a randomized double-masked prospective study using three dose levels. Osteoporos Int. 1999;9(4):296-306. https://pubmed.ncbi.nlm.nih.gov/10550446/
  162. Stargrove MB, Treasure J, McKee DL. Herb, Nutrient, and Drug Interactions, Elsevier. 2008. https://www.us.elsevierhealth.com/herb-nutrient-and-drug-interactions-9780323029643.html.
  163. West RJ, Lloyd JK. The effect of cholestyramine on intestinal absorption. Gut. 1975 Feb;16(2):93-8. https://pubmed.ncbi.nlm.nih.gov/1168607/
  164. Probstfield JL, Lin TL, Peters J, Hunninghake DB. Carotenoids and vitamin A: the effect of hypocholesterolemic agents on serum levels. Metabolism. 1985 Jan;34(1):88-91. https://pubmed.ncbi.nlm.nih.gov/3965864/
  165. Tonstad S, Sivertsen M, Aksnes L, Ose L. Low dose colestipol in adolescents with familial hypercholesterolaemia. Arch Dis Child. 1996 Feb;74(2):157-60. https://pubmed.ncbi.nlm.nih.gov/8660081/
  166. Tonstad S, Knudtzon J, Sivertsen M, et al. Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia. J Pediatr. 1996 Jul;129(1):42-9. https://pubmed.ncbi.nlm.nih.gov/8757561/
  167. Ismail F, Corder CN, Epstein S, et al. Effects of pravastatin and cholestyramine on circulating levels of parathyroid hormone and vitamin D metabolites. Clin Ther. 1990 Sep-Oct;12(5):427-30. PMID: 2125243. https://pubmed.ncbi.nlm.nih.gov/2125243/
  168. Davidson ZE, Walker KZ, Truby H. Clinical review: Do glucocorticosteroids alter vitamin D status? A systematic review with meta-analyses of observational studies. J Clin Endocrinol Metab. 2012 Mar;97(3):738-44. https://pubmed.ncbi.nlm.nih.gov/22188740/
  169. Islam MA, Khandker SS, Alam SS, Kotyla P, Hassan R. Vitamin D status in patients with systemic lupus erythematosus (SLE): A systematic review and meta-analysis. Autoimmun Rev. 2019 Nov;18(11):102392. https://pubmed.ncbi.nlm.nih.gov/31520805/
  170. Chesney RW, Mazess RB, Hamstra AJ et al. Reduction of serum 1,25-dihydroxyvitamin D3 in children receiving glucocorticoids. Lancet 1978;2:1123-1125. https://pubmed.ncbi.nlm.nih.gov/82684/
  171. Nielsen HK, Eriksen EF, Storm T, Mosekilde L. The effects of short-term, high-dose treatment with prednisone on the nuclear uptake of 1,25-dihydroxyvitamin D3 in monocytes from normal human subjects. Metabolism 1988;37:109-114. https://pubmed.ncbi.nlm.nih.gov/2828820/
  172. Hahn TJ, Halstead LR, Baran DT. Effects off short-term glucocorticoid administration on intestinal calcium absorption and circulating vitamin D metabolite concentrations in man. J Clin Endocrinol Metab 1981;52:111-115. https://pubmed.ncbi.nlm.nih.gov/6969728/
  173. Hahn TJ, Halstead LR, Haddad JG Jr. Serum 25-hydroxyvitamin D concentrations in patients receiving chronic corticosteroid therapy. J Lab Clin Med 1977;90:399-404. https://pubmed.ncbi.nlm.nih.gov/886226/
  174. Richy F, Ethgen O, Bruyere O, Reginster JY. Efficacy of alphacalcidol and calcitriol in primary and corticosteroid-induced osteoporosis: a meta-analysis of their effects on bone mineral density and fracture rate. Osteoporos Int. 2004 Apr;15(4):301-10. https://pubmed.ncbi.nlm.nih.gov/14740153/
  175. Homik J, Suarez-Almazor ME, Shea B, Cranney A, Wells G, Tugwell P. Calcium and vitamin D for corticosteroid-induced osteoporosis. Cochrane Database Syst rev. 2000;1998(2):CD000952. https://pubmed.ncbi.nlm.nih.gov/10796394/
  176. Bell JM, Shields MD, Watters J, Hamilton A, Beringer T, Elliott M, Quinlivan R, Tirupathi S, Blackwood B. Interventions to prevent and treat corticosteroid-induced osteoporosis and prevent osteoporotic fractures in Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2017 Jan 24;1(1):CD010899. https://pubmed.ncbi.nlm.nih.gov/28117876/
  177. de Nijs RN, Jacobs JW, Algra A, Lems WF, Bijlsma JW. Prevention and treatment of glucocorticoid-induced osteoporosis with active vitamin D3 analogues: a review with meta-analysis of randomized controlled trials including organ transplantation studies. Osteoporos Int. 2004 Aug;15(8):589-602. https://pubmed.ncbi.nlm.nih.gov/15138667/
  178. Jolliffe DA, Greenberg L, Hooper RL, et al. Vitamin D supplementation to prevent asthma exacerbations: a systematic review and meta-analysis of individual participant data. Lancet Respir Med. 2017 Nov;5(11):881-890. https://pubmed.ncbi.nlm.nih.gov/28986128/
  179. Wat H, Dytoc M. Off-label uses of topical vitamin D in dermatology: a systematic review. J Cutan Med Surg. 2014 Mar-Apr;18(2):91-108. https://pubmed.ncbi.nlm.nih.gov/24636434/
  180. Mason AR, Mason J, Cork M, Dooley G, Hancock H. Topical treatments for chronic plaque psoriasis. Cochrane Database Syst Rev. 2013 Mar 28;(3):CD005028. https://pubmed.ncbi.nlm.nih.gov/24124809/
  181. Bailey EE, Ference EH, Alikhan A, Hession MT, Armstrong AW. Combination treatments for psoriasis: a systematic review and meta-analysis. Arch Dermatol. 2012 Apr;148(4):511-22. https://pubmed.ncbi.nlm.nih.gov/22184718/
  182. Buckley LM, Leib ES, Cartularo KS et al. Calcium and vitamin D3 supplementation prevents bone loss in the spine secondary to low-dose corticosteroids in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 1996;125:961-968. https://pubmed.ncbi.nlm.nih.gov/8967706/
  183. Hakala M, Kröger H, Valleala H, et al; ONCE trial group. Once-monthly oral ibandronate provides significant improvement in bone mineral density in postmenopausal women treated with glucocorticoids for inflammatory rheumatic diseases: a 12-month, randomized, double-blind, placebo-controlled trial. Scand J Rheumatol. 2012 Aug;41(4):260-6. https://pubmed.ncbi.nlm.nih.gov/22803768/
  184. van der Goes MC, Jacobs JW, Jurgens MS, et al. Are changes in bone mineral density different between groups of early rheumatoid arthritis patients treated according to a tight control strategy with or without prednisone if osteoporosis prophylaxis is applied? Osteoporos Int. 2013 Apr;24(4):1429-36. https://pubmed.ncbi.nlm.nih.gov/23011680/
  185. Lems WF, Van Veen GJ, Gerrits MI et al. Effect of low-dose prednisone (with calcium and calcitriol supplementation) on calcium and bone metabolism in healthy volunteers. Br J Rheumatol 1998;37:27-33. https://pubmed.ncbi.nlm.nih.gov/9487247/
  186. Wissing KM, Broeders N, Moreno-Reyes R et al. A controlled study of vitamin D3 to prevent bone loss in renal-transplant patients receiving low doses of steroids. Transplantation 2005;79:108-115. https://pubmed.ncbi.nlm.nih.gov/15714177/
  187. Zhang X, Wu X, Xiong L, et al. Role of vitamin D3 in regulation of T helper cell 17 and regulatory T-cell balance in rats with immunoglobulin a nephropathy. Iran J Kidney Dis. 2014 Sep;8(5):363-70. PMID: 25194402. https://pubmed.ncbi.nlm.nih.gov/25194402/
  188. van Hoof HJ, van der Mooren MJ, Swinkels LM, Sweep CG, Merkus JM, Benraad TJ. Female sex hormone replacement therapy increases serum free 1,25-dihydroxyvitamin D3: a 1-year prospective study. Clin Endocrinol (Oxf). 1999 Apr;50(4):511-6. https://pubmed.ncbi.nlm.nih.gov/10468912/
  189. Heikkinen A, Parviainen MT, Tuppurainen MT, et al. Effects of postmenopausal hormone replacement therapy with and without vitamin D3 on circulating levels of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D. Calcif Tissue Int. 1998 Jan;62(1):26-30. https://pubmed.ncbi.nlm.nih.gov/9405729/
  190. Bikle DD, Halloran BP, Harris ST, Portale AA. Progestin antagonism of estrogen stimulated 1,25-dihydroxyvitamin D levels. J Clin Endocrinol Metab 1992;75:519-523. https://pubmed.ncbi.nlm.nih.gov/1639954/
  191. Aloia JF, Vaswani A, Yeh JK, et al. Calcium supplementation with and without hormone replacement therapy to prevent postmenopausal bone loss. Ann Intern Med. 1994 Jan 15;120(2):97-103. https://pubmed.ncbi.nlm.nih.gov/8256988/
  192. Hildebolt CF, Pilgram TK, Dotson M, et al. Estrogen and/or calcium plus vitamin D increase mandibular bone mass. J Periodontol. 2004 Jun;75(6):811-6. https://pubmed.ncbi.nlm.nih.gov/15295946/
  193. Ormarsdóttir S, Mallmin H, Naessén T, et al. An open, randomized, controlled study of transdermal hormone replacement therapy on the rate of bone loss in primary biliary cirrhosis. J Intern Med. 2004 Jul;256(1):63-9. https://pubmed.ncbi.nlm.nih.gov/15189367/
  194. Pereira SP, O'Donohue J, Moniz C, et al. Transdermal hormone replacement therapy improves vertebral bone density in primary biliary cirrhosis: results of a 1-year controlled trial. Aliment Pharmacol Ther. 2004 Mar 1;19(5):563-70. https://pubmed.ncbi.nlm.nih.gov/14987325/
  195. Recker RR, Davies KM, Dowd RM, Heaney RP. The effect of low-dose continuous estrogen and progesterone therapy with calcium and vitamin D on bone in elderly women. A randomized, controlled trial. Ann Intern Med. 1999 Jun 1;130(11):897-904. https://pubmed.ncbi.nlm.nih.gov/10375338/
  196. Cadeau C, Fournier A, Mesrine S, et al. Interaction between current vitamin D supplementation and menopausal hormone therapy use on breast cancer risk: evidence from the E3N cohort. Am J Clin Nutr. 2015 Oct;102(4):966-73. https://pubmed.ncbi.nlm.nih.gov/26354532/
  197. Robbins JA, Aragaki A, Crandall CJ, et al. Women's Health Initiative clinical trials: interaction of calcium and vitamin D with hormone therapy. Menopause. 2014 Feb;21(2):116-23. https://pubmed.ncbi.nlm.nih.gov/23799356/
  198. Jackson RD, Shidham S. The role of hormone therapy and calcium plus vitamin D for reduction of bone loss and risk for fractures: lessons learned from the Women's Health Initiative. Curr Osteoporos Rep. 2007 Dec;5(4):153-9. https://pubmed.ncbi.nlm.nih.gov/18430389/
  199. Jackson RD et al; Women's Health Initiative Investigators. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006 Feb 16;354(7):669-83. https://pubmed.ncbi.nlm.nih.gov/16481635/
  200. Sullivan SD, Lehman A, Nathan NK, et al. Age of menopause and fracture risk in postmenopausal women randomized to calcium + vitamin D, hormone therapy, or the combination: results from the Women's Health Initiative Clinical Trials. Menopause. 2017 Apr;24(4):371-378. https://pubmed.ncbi.nlm.nih.gov/27801706/
  201. Ackerman KE, Singhal V, Baskaran C, et al. Oestrogen replacement improves bone mineral density in oligo-amenorrhoeic athletes: a randomised clinical trial. Br J Sports Med. 2019 Feb;53(4):229-236. https://pubmed.ncbi.nlm.nih.gov/30301734/
  202. Cleemann L, Hjerrild BE, Lauridsen AL, et al. Long-term hormone replacement therapy preserves bone mineral density in Turner syndrome. Eur J Endocrinol. 2009 Aug;161(2):251-7. https://pubmed.ncbi.nlm.nih.gov/19447901/
  203. Komulainen M, Kröger H, Tuppurainen MT, et al. Prevention of femoral and lumbar bone loss with hormone replacement therapy and vitamin D3 in early postmenopausal women: a population-based 5-year randomized trial. J Clin Endocrinol Metab. 1999 Feb;84(2):546-52. https://pubmed.ncbi.nlm.nih.gov/10022414/
  204. Komulainen M, Tuppurainen MT, Kröger H, et al. Vitamin D and HRT: no benefit additional to that of HRT alone in prevention of bone loss in early postmenopausal women. A 2.5-year randomized placebo-controlled study. Osteoporos Int. 1997;7(2):126-32. https://pubmed.ncbi.nlm.nih.gov/9166392/
  205. Komulainen MH, Kröger H, Tuppurainen MT, et al. HRT and Vit D in prevention of non-vertebral fractures in postmenopausal women; a 5 year randomized trial. Maturitas. 1998 Nov 30;31(1):45-54. https://pubmed.ncbi.nlm.nih.gov/10091204/
  206. Wiepjes CM, et al. Bone Mineral Density Increases in Trans Persons After 1 Year of Hormonal Treatment: A Multicenter Prospective Observational Study. J Bone Miner Res. 2017 Jun;32(6):1252-1260. https://pubmed.ncbi.nlm.nih.gov/28370342/
  207. Chen M, Chow SN. Additive effect of alfacalcidol on bone mineral density of the lumbar spine in Taiwanese postmenopausal women treated with hormone replacement therapy and calcium supplementation: a randomized 2-year study. Clin Endocrinol (Oxf). 2001 Aug;55(2):253-8. https://pubmed.ncbi.nlm.nih.gov/11531934/
  208. Gallagher JC, Fowler SE, Detter JR, Sherman SS. Combination treatment with estrogen and calcitriol in the prevention of age-related bone loss. J Clin Endocrinol Metab 2001;86:3618-3628. https://pubmed.ncbi.nlm.nih.gov/11502787/
  209. Tuppurainen MT, Komulainen M, Kröger H, et al. Does vitamin D strengthen the increase in femoral neck BMD in osteoporotic women treated with estrogen? Osteoporos Int. 1998;8(1):32-8. https://pubmed.ncbi.nlm.nih.gov/9692075/
  210. Jiang X, Nudy M, Aragaki AK, et al. Women's Health Initiative clinical trials: potential interactive effect of calcium and vitamin D supplementation with hormonal therapy on cardiovascular disease. Menopause. 2019 Aug;26(8):841-849. https://pubmed.ncbi.nlm.nih.gov/31145202/
  211. Schnatz PF, Jiang X, Aragaki AK, et al. Effects of Calcium, Vitamin D, and Hormone Therapy on Cardiovascular Disease Risk Factors in the Women's Health Initiative: A Randomized Controlled Trial. Obstet Gynecol. 2017 Jan;129(1):121-129. https://pubmed.ncbi.nlm.nih.gov/27926633/
  212. Heikkinen AM, Tuppurainen MT, Niskanen L, et al. Long-term vitamin D3 supplementation may have adverse effects on serum lipids during postmenopausal hormone replacement therapy. Eur J Endocrinol. 1997 Nov;137(5):495-502. https://pubmed.ncbi.nlm.nih.gov/9405029/
  213. Myrup B, Jensen GF, McNair P. Cardiovascular risk factors during estrogen-norethindrone and cholecalciferol treatment. Arch Intern Med 1992;152:2265-2268. https://pubmed.ncbi.nlm.nih.gov/1332634/
  214. Fedotova JO. Vitamin D3 treatment differentially affects anxiety- like behavior in the old ovariectomized female rats and old ovariectomized female rats treated with low dose of 17β-estradiol. BMC Med Genet. 2019 Apr 9;20(Suppl 1):49. https://pubmed.ncbi.nlm.nih.gov/30967121/
  215. Wu HX, Xiong XF, Zhu M, et al. Effects of vitamin D supplementation on the outcomes of patients with pulmonary tuberculosis: a systematic review and meta-analysis. BMC Pulm Med. 2018 Jun 28;18(1):108. https://pubmed.ncbi.nlm.nih.gov/29954353/
  216. Daley P, Jagannathan V, John KR, et al. Adjunctive vitamin D for treatment of active tuberculosis in India: a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2015;15:528–534. https://pubmed.ncbi.nlm.nih.gov/25863562/
  217. Ganmaa D, Munkhzul B, Fawzi W, et al. High-dose vitamin D3 during tuberculosis treatment in Mongolia: a randomised controlled trial. Am J Respir Crit Care Med. 2017;196:628–637. https://pubmed.ncbi.nlm.nih.gov/28692301/
  218. Martineau AR, Hanifa Y, Islam K. High-dose vitamin D3 during intensive phase treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet. 2011;377:242–250. https://pubmed.ncbi.nlm.nih.gov/21215445/
  219. Mily A, Rekha RS, Kamal SM, et al. Significant effects of oral Phenylbutyrate and vitamin D3 adjunctive therapy in pulmonary tuberculosis: a randomized controlled trial. PLoS One. 2015;10:e0138340. https://pubmed.ncbi.nlm.nih.gov/26394045/
  220. Nursyam EW, Amin Z, Rumende CM. The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med Indones. 2006;38:3–5. https://pubmed.ncbi.nlm.nih.gov/16479024/
  221. Salahuddin N, Ali F, Hasan Z, et al. Vitamin D accelerates clinical recovery from tuberculosis: results of the SUCCINCT study [supplementary cholecalciferol in recovery from tuberculosis]. A randomized, placebo-controlled, clinical trial of vitamin D supplementation in patients with pulmonary tuberculosis. BMC Infect Dis. 2013;13:22. https://pubmed.ncbi.nlm.nih.gov/23331510/
  222. Tukvadze N, Sanikidze E, Kipiani M, et al. High-dose vitamin D3 in adults with pulmonary tuberculosis: a double-blind randomized controlled trial. Am J Clin Nutr. 2015;102:1059–1069. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625591/
  223. Wejse C, Gomes VF, Rabna P, et al. Vitamin D as supplementary treatment for tuberculosis: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2009;179:843–850. https://pubmed.ncbi.nlm.nih.gov/19179490/
  224. Huang SJ, Wang XH, Liu ZD, et al. Vitamin D deficiency and the risk of tuberculosis: a meta-analysis. Drug Des Devel Ther. 2016 Dec 28;11:91-102. https://pubmed.ncbi.nlm.nih.gov/28096657/
  225. Kim JH, Park JS, Cho YJ, et al. Low serum 25-hydroxyvitamin D level: an independent risk factor for tuberculosis? Clin Nutr. 2014;33(6):1081–1086. https://pubmed.ncbi.nlm.nih.gov/24332595/
  226. Davies PD, Brown RC, Church HA, Woodhead JS. The effect of anti-tuberculosis chemotherapy on vitamin D and calcium metabolism. Tubercle. 1987;68(4):261–266. https://europepmc.org/article/med/3455567
  227. Koo HK, Lee JS, Jeong YJ, et al. Vitamin D deficiency and changes in serum vitamin D levels with treatment among tuberculosis patients in South Korea. Respirology. 2012;17(5):808–813 https://pubmed.ncbi.nlm.nih.gov/22449254/
  228. Hong JY, Kim SY, Chung KS, et al. Association between vitamin D deficiency and tuberculosis in a Korean population. Int J Tuberc Lung Dis. 2014;18(1):73–78. https://pubmed.ncbi.nlm.nih.gov/24365556/
  229. Tostmann A, Wielders JP, Kibiki GS, Verhoef H, Boeree MJ, van der Ven AJ. Serum 25-hydroxy-vitamin D3 concentrations increase during tuberculosis treatment in Tanzania. Int J Tuberc Lung Dis. 2010;14(9):1147–1152. https://pubmed.ncbi.nlm.nih.gov/20819260/
  230. Hasanain AFA, Zayed AAH, Abd-Ellatief RB, Nafee AMA. Efficacy and safety of cholecalciferol-augmented anti-tuberculosis therapy for treatment of naïve patients with pulmonary tuberculosis: A randomized, controlled, clinical study. Indian J Tuberc. 2019 Jan;66(1):111-117. https://pubmed.ncbi.nlm.nih.gov/30797266/
  231. Morcos MM, Gabr AA, Samuel S et al. Vitamin D administration to tuberculous children and its value. Boll Chim Farm 1998;137:157-164. https://pubmed.ncbi.nlm.nih.gov/9689902/
  232. Self TH, Chrisman CR, Baciewicz AM, Bronze MS. Isoniazid drug and food interactions. Am J Med Sci. 1999 May;317(5):304-11. https://pubmed.ncbi.nlm.nih.gov/10334118/
  233. Baciewicz AM, Self TH. Isoniazid interactions. South Med J. 1985 Jun;78(6):714-8. https://pubmed.ncbi.nlm.nih.gov/3890202/
  234. Toppet M, Vainsel M, Vertongen F et al. [Sequential development of vitamin D metabolites under isoniazid and rifampicin therapy]. Arch Fr Pediatr 1988;45:145-148. https://pubmed.ncbi.nlm.nih.gov/2898926/
  235. Brodie MJ, Boobis AR, Hillyard CJ et al. Effect of isoniazid on vitamin D metabolism and hepatic monooxygenase activity. Clin Pharmacol Ther 1981;30:363-367. https://pubmed.ncbi.nlm.nih.gov/7273600/
  236. Brodie MJ, Boobis AR, Dollery CT et al. Rifampicin and vitamin D metabolism. Clin Pharmacol Ther 1980;27:810-814. https://pubmed.ncbi.nlm.nih.gov/7379450/
  237. Bengoa JM, Bolt MJ, Rosenberg IH. Hepatic vitamin D 25-hydroxylase inhibition by cimetidine and isoniazid. J Lab Clin Med 1984;104:546-552. https://pubmed.ncbi.nlm.nih.gov/6481217/
  238. Deruelle P, Coulon C. The use of low-molecular-weight heparins in pregnancy--how safe are they? Curr Opin Obstet Gynecol. 2007 Dec;19(6):573-7. https://pubmed.ncbi.nlm.nih.gov/18007136/
  239. Wise PH, Hall AJ. Heparin-induced osteopenia in pregnancy. Br Med J. 1980 Jul 12;281(6233):110-1. https://pubmed.ncbi.nlm.nih.gov/7427202/
  240. Rezaieyazdi Z, Falsoleiman H, Khajehdaluee M, et al. Reduced bone density in patients on long-term warfarin. Int J Rheum Dis. 2009 Jul;12(2):130-5. https://pubmed.ncbi.nlm.nih.gov/20374330/
  241. Dadwal G, Schulte-Huxel T, Kolb G. Effect of antithrombotic drugs on bone health. Z Gerontol Geriatr. 2020 Aug;53(5):457-462. https://pubmed.ncbi.nlm.nih.gov/31414167/
  242. Aarskog D, Aksnes L, Markestad T, et al. Heparin-induced inhibition of 1,25-dihydroxyvitamin D formation. Am J Obstet Gynecol. 1984 Apr 15;148(8):1141-2. https://pubmed.ncbi.nlm.nih.gov/6711652/
  243. Camici M. Dialysis-associated bone disease. JAMA. 1986 Sep 19;256(11):1447. https://pubmed.ncbi.nlm.nih.gov/3747062/
  244. Aarskog D, Aksnes L, Lehmann V. Low 1,25-dihydroxyvitamin D in heparin-induced osteopenia. Lancet. 1980 Sep 20;2(8195 pt 1):650-1. https://pubmed.ncbi.nlm.nih.gov/6107445/
  245. Haram K, Hervig T, Thordarson H, et al. Osteopenia caused by heparin treatment in pregnancy. Acta Obstet Gynecol Scand. 1993 Nov;72(8):674-5 https://pubmed.ncbi.nlm.nih.gov/8259756/
  246. Stenova E, Steno B, Killinger Z, et al. Effect of long-term oral anticoagulant therapy on bone mineral density and bone turnover markers: a prospective 12 month study. Bratisl Lek Listy. 2011;112(2):71-6. https://pubmed.ncbi.nlm.nih.gov/21456505/
  247. Keskin Ü, Basat S. The effect of vitamin D levels on gastrointestinal bleeding in patients with warfarin therapy. Blood Coagul Fibrinolysis. 2019 Oct;30(7):331-336 https://pubmed.ncbi.nlm.nih.gov/31415247/
  248. Hejazi ME, Modarresi-Ghazani F, Hamishehkar H, et al. The Effect of Treatment of Vitamin D Deficiency on the Level of P-Selectin and hs-CRP in Patients With Thromboembolism: A Pilot Randomized Clinical Trial. J Clin Pharmacol. 2017 Jan;57(1):40-47. https://pubmed.ncbi.nlm.nih.gov/27225617
  249. Schrogie JJ. Letter: Coagulopathy and fat-soluble vitamins. JAMA. 1975 Apr 7;232(1):19. https://pubmed.ncbi.nlm.nih.gov/1172961/
  250. Price PA, Faus SA, Williamson MK. Warfarin-induced artery calcification is accelerated by growth and vitamin D. Arterioscler Thromb Vasc Biol. 2000 Feb;20(2):317-27. https://pubmed.ncbi.nlm.nih.gov/10669626/
  251. Price PA, Sloper SA. Concurrent warfarin treatment further reduces bone mineral levels in 1,25-dihydroxyvitamin D3-treated rats. J Biol Chem. 1983 May 25;258(10):6004-7. https://pubmed.ncbi.nlm.nih.gov/6602126/
  252. Sugimoto I, Hirakawa K, Ishino T, et al. Vitamin D3, vitamin K2, and warfarin regulate bone metabolism in human paranasal sinus bones. Rhinology. 2007 Sep;45(3):208-13. https://pubmed.ncbi.nlm.nih.gov/17956020/
  253. Adams JS, Sharma OP, Diz MM, Endres DB. Ketoconazole decreases the serum 1,25-dihydroxyvitamin D and calcium concentration in sarcoidosis-associated hypercalcemia. J Clin Endocrinol Metab 1990;70:1090-1095. https://pubmed.ncbi.nlm.nih.gov/2318934/
  254. Breslau NA, Preminger GM, Adams BV et al. Use of ketoconazole to probe the pathogenetic importance of 1,25-dihydroxyvitamin D in absorptive hypercalciuria. J Clin Endocrinol Metab 1992;75:1446-1452. https://pubmed.ncbi.nlm.nih.gov/1464646/
  255. Glass AR, Cerletty JM, Elliott W et al. Ketoconazole reduces elevated serum levels of 1,25-dihydroxyvitamin D in hypercalcemic sarcoidosis. J Endocrinol Invest 1990;13:407-413. https://pubmed.ncbi.nlm.nih.gov/2166103/
  256. Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D and total serum calcium in hypercalcemic patients. J Clin Endocrinol Metab 1988;66:934-938. https://pubmed.ncbi.nlm.nih.gov/3360901/
  257. Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 1986;63:766-769. https://pubmed.ncbi.nlm.nih.gov/3755445/
  258. Saggese G, Bertelloni S, Baroncelli GI, Di Nero G. Ketoconazole decreases the serum ionized calcium and 1,25-dihydroxyvitamin D levels in tuberculosis-associated hypercalcemia. Am J Dis Child. 1993 Mar;147(3):270-3. https://pubmed.ncbi.nlm.nih.gov/8438806/
  259. Riancho JA, Amado JA, Freijanes J, Otero M, González Macías J. Ketoconazole and vitamin D metabolism in hyperparathyroidism. Horm Metab Res. 1989 Jan;21(1):51. https://pubmed.ncbi.nlm.nih.gov/2925153/
  260. Nguyen M, Boutignon H, Mallet E, et al. Infantile hypercalcemia and hypercalciuria: new insights into a vitamin D-dependent mechanism and response to ketoconazole treatment. J Pediatr. 2010 Aug;157(2):296-302. https://pubmed.ncbi.nlm.nih.gov/20394945/
  261. Peehl DM, Seto E, Feldman D. Rationale for combination ketoconazole/vitamin D treatment of prostate cancer. Urology 2001;58:123-126. https://pubmed.ncbi.nlm.nih.gov/11502466/
  262. Peehl DM, Seto E, Hsu JY, Feldman D. Preclinical activity of ketoconazole in combination with calcitriol or the vitamin D analogue EB 1089 in prostate cancer cells. J Urol. 2002 Oct;168(4 Pt 1):1583-8. https://pubmed.ncbi.nlm.nih.gov/12352462/
  263. Wang X, Gardner JP, Kheir A, et al. Synergistic induction of HL60 cell differentiation by ketoconazole and 1-desoxy analogues of vitamin D3. J Natl Cancer Inst. 1997 Aug 20;89(16):1199-206. https://pubmed.ncbi.nlm.nih.gov/9274914/
  264. Kota BP, Allen JD, Roufogalis BD. The effect of vitamin D3 and ketoconazole combination on VDR-mediated P-gp expression and function in human colon adenocarcinoma cells: implications in drug disposition and resistance. Basic Clin Pharmacol Toxicol. 2011 Aug;109(2):97-102. https://pubmed.ncbi.nlm.nih.gov/21382175/
  265. Khalil MS. Vitamin D3 May Ameliorate the Ketoconazole Induced Adrenal Injury: Histological and Immunohistochemical Studies on Albino Rats. Acta Histochem Cytochem. 2015 Aug 27;48(4):103-13. https://pubmed.ncbi.nlm.nih.gov/26379312/
  266. Segersten U, Björklund P, Hellman P, et al. Potentiating effects of nonactive/active vitamin D analogues and ketoconazole in parathyroid cells. Clin Endocrinol (Oxf). 2007 Mar;66(3):399-404. https://pubmed.ncbi.nlm.nih.gov/17302875/
  267. Hewison M. Antibacterial effects of vitamin D. Nat Rev Endocrinol. 2011 Jun;7(6):337-45. https://pubmed.ncbi.nlm.nih.gov/21263449/
  268. Norlin AC, Hansen S, Wahren-Borgström E, et al. Vitamin D3 Supplementation and Antibiotic Consumption - Results from a Prospective, Observational Study at an Immune-Deficiency Unit in Sweden. PLoS One. 2016 Sep 22;11(9):e0163451. https://pubmed.ncbi.nlm.nih.gov/27657724/
  269. Tran B, et al. Effect of vitamin D supplementation on antibiotic use: a randomized controlled trial. Am J Clin Nutr. 2014 Jan;99(1):156-61. https://pubmed.ncbi.nlm.nih.gov/24108783/
  270. Bergman P, Norlin AC, Hansen S, et al. Vitamin D3 supplementation in patients with frequent respiratory tract infections: a randomised and double-blind intervention study. BMJ Open. 2012 Dec 13;2(6):e001663. https://pubmed.ncbi.nlm.nih.gov/23242238/
  271. Das RR, Singh M, Naik SS. Vitamin D as an adjunct to antibiotics for the treatment of acute childhood pneumonia. Cochrane Database Syst Rev. 2018 Jul 19;7(7):CD011597. https://pubmed.ncbi.nlm.nih.gov/30024634/
  272. Choudhary N, Gupta P. Vitamin D supplementation for severe pneumonia--a randomized controlled trial. Indian Pediatr. 2012 Jun;49(6):449-54. https://pubmed.ncbi.nlm.nih.gov/21992858/
  273. Manaseki-Holland S, Qader G, Isaq Masher M, et al. Effects of vitamin D supplementation to children diagnosed with pneumonia in Kabul: a randomised controlled trial. Trop Med Int Health. 2010 Oct;15(10):1148-55. https://pubmed.ncbi.nlm.nih.gov/20723187/
  274. Dhungel A, Alam MS. Efficacy of vitamin D in children with pneumonia: a randomized control trial study. Janaki Medical College Journal of Medical Sciences 2015;3(1):5‐13. https://www.nepjol.info/index.php/JMCJMS/article/view/15369
  275. Gupta P, Dewan P, Shah D, Sharma N, Bedi N, Kaur IR, et al. Vitamin D supplementation for treatment and prevention of pneumonia in under‐five children: a randomized double‐blind placebo controlled trial. Indian Pediatrics 2016;53(11):967‐76. https://pubmed.ncbi.nlm.nih.gov/27889723/
  276. Rahmati MB, Rezapour M, Shahvari SZ. The effects of vitamin D supplementation in respiratory index of severity in children (RISC) of hospitalized patients with community‐acquired pneumonia: a double‐blind randomized clinical trial. Acta HealthMedica 2016;1(3):60‐4. http://www.actahealthmedica.com/index.php/browse-articles/2016/3/22-60
  277. Rajshekhar CS, Vanaki R, Badakali AV, Pol RR, Yelamali BC. Efficacy of vitamin D supplementation in the treatment of severe pneumonia in children aged less than five years. International Journal of Contemporary Pediatrics 2016;3(1):96‐9. https://www.ijpediatrics.com/index.php/ijcp/article/view/338
  278. Somnath SH, Biswal N, Chandrasekaran V, Jagdisan B, Bobby Z. Therapeutic effect of vitamin D in acute lower respiratory infection: a randomized controlled trial. Clinical Nutrition ESPEN 2017;20:24‐8. https://pubmed.ncbi.nlm.nih.gov/29072165/
  279. Angelakis E, Oddoze C, Raoult D. Vitamin D and prolonged treatment with photosensitivity-associated antibiotics. Antimicrob Agents Chemother. 2013 Dec;57(12):6409-10. https://pubmed.ncbi.nlm.nih.gov/24100505/
  280. Bora SA, Kennett MJ, Smith PB, et al. Regulation of vitamin D metabolism following disruption of the microbiota using broad spectrum antibiotics. J Nutr Biochem. 2018 Jun;56:65-73. https://pubmed.ncbi.nlm.nih.gov/29459310/
  281. Robien K, Oppeneer SJ, Kelly JA, Hamilton-Reeves JM. Drug-vitamin D interactions: a systematic review of the literature. Nutr Clin Pract. 2013 Apr;28(2):194-208. https://pubmed.ncbi.nlm.nih.gov/23307906/
  282. Holecki M, et al. [Impact of the mass- reductive therapy with orlistat on 25-(OH)-D3 and PTH concentration in sera of obese, menopausal women]. Endokrynol Pol. 2005 May-Jun;56(3):240-5. https://pubmed.ncbi.nlm.nih.gov/16350716/
  283. James WP, Avenell A, Broom J, Whitehead J. A one-year trial to assess the value of orlistat in the management of obesity. Int J Obes Relat Metab Disord. 1997 Jun;21 Suppl 3:S24-30. PMID: 9225173. https://pubmed.ncbi.nlm.nih.gov/9225173/
  284. Gotfredsen A, Westergren Hendel H, Andersen T. Influence of orlistat on bone turnover and body composition. Int J Obes Relat Metab Disord. 2001 Aug;25(8):1154-60. https://pubmed.ncbi.nlm.nih.gov/11486790/
  285. McDuffie JR, Calis KA, Booth SL, Uwaifo GI, Yanovski JA. Effects of orlistat on fat-soluble vitamins in obese adolescents. Pharmacotherapy. 2002 Jul;22(7):814-22. https://pubmed.ncbi.nlm.nih.gov/12126214/
  286. Odes HS, Fraser GM, Krugliak P, et al. Effect of cimetidine on hepatic vitamin D metabolism in humans. Digestion. 1990;46(2):61-4. https://pubmed.ncbi.nlm.nih.gov/2253823/
  287. No authors listed. Cimetidine inhibits the hepatic hydroxylation of vitamin D. Nutr Rev. 1985 Jun;43(6):184-5. https://pubmed.ncbi.nlm.nih.gov/4022464/
  288. Bahtiri E, Islami H, Hoxha R, et al. Esomeprazole use is independently associated with significant reduction of BMD: 1-year prospective comparative safety study of four proton pump inhibitors. J Bone Miner Metab. 2016 Sep;34(5):571-9. https://pubmed.ncbi.nlm.nih.gov/26209167/
  289. Arj A, Razavi Zade M, Yavari M, et al. Proton pump inhibitors use and change in bone mineral density. Int J Rheum Dis. 2016 Sep;19(9):864-8. https://pubmed.ncbi.nlm.nih.gov/27242025
  290. Eom CS, Park SM, Myung SK, et al. Use of acid-suppressive drugs and risk of fracture: a meta-analysis of observational studies. Ann Fam Med. 2011 May-Jun;9(3):257-67. https://pubmed.ncbi.nlm.nih.gov/21555754/
  291. Huang C, Cen C, Ding X, et al. Effects of calcitriol on bone mineral density in patients treated with esomeprazole. Pharm Biol. 2014 Oct;52(10):1341-4. https://pubmed.ncbi.nlm.nih.gov/25046547/
  292. Marechal JD, Yu J, Brown S, et al. In silico and in vitro screening for inhibition of cytochrome P450 CYP3A4 by comedications commonly used by patients with cancer. Drug Metab Dispos. 2006 Apr;34(4):534-8. https://pubmed.ncbi.nlm.nih.gov/16415122/
  293. Palaparthy R, Pradhan RS, Chan J, et al. Effect of omeprazole on the pharmacokinetics of paricalcitol in healthy subjects. Biopharm Drug Dispos. 2007 Mar;28(2):65-71. https://pubmed.ncbi.nlm.nih.gov/17173278
  294. Galmiche JP, Hatlebakk J, Attwood S, et al. LOTUS Trial Collaborators. Laparoscopic antireflux surgery vs esomeprazole treatment for chronic GERD: the LOTUS randomized clinical trial. JAMA. 2011 May 18;305(19):1969-77. https://pubmed.ncbi.nlm.nih.gov/21586712
  295. Sharara AI, El-Halabi MM, Ghaith OA, et al. Proton pump inhibitors have no measurable effect on calcium and bone metabolism in healthy young males: a prospective matched controlled study. Metabolism. 2013 Apr;62(4):518-26. https://pubmed.ncbi.nlm.nih.gov/23102518
  296. Li X, Liao L, Yan X, et al. Protective effects of 1-alpha-hydroxyvitamin D3 on residual beta-cell function in patients with adult-onset latent autoimmune diabetes (LADA). Diabetes Metab Res Rev. 2009 Jul;25(5):411-6. https://pubmed.ncbi.nlm.nih.gov/19488999/
  297. Ataie-Jafari A, Loke SC, Rahmat AB, et al. A randomized placebo-controlled trial of alphacalcidol on the preservation of beta cell function in children with recent onset type 1 diabetes. Clin Nutr. 2013 Dec;32(6):911-7. https://pubmed.ncbi.nlm.nih.gov/23395257/
  298. Treiber G, Prietl B, Fröhlich-Reiterer E, et al. Cholecalciferol supplementation improves suppressive capacity of regulatory T-cells in young patients with new-onset type 1 diabetes mellitus - A randomized clinical trial. Clin Immunol. 2015 Dec;161(2):217-24. https://pubmed.ncbi.nlm.nih.gov/26277548/
  299. Gabbay MA, Sato MN, Finazzo C, et al. Effect of cholecalciferol as adjunctive therapy with insulin on protective immunologic profile and decline of residual β-cell function in new-onset type 1 diabetes mellitus. Arch Pediatr Adolesc Med. 2012 Jul 1;166(7):601-7. https://pubmed.ncbi.nlm.nih.gov/22751874
  300. Pitocco D, Crinò A, Di Stasio E, et al; IMDIAB Group. The effects of calcitriol and nicotinamide on residual pancreatic beta-cell function in patients with recent-onset Type 1 diabetes (IMDIAB XI). Diabet Med. 2006 Aug;23(8):920-3. https://pubmed.ncbi.nlm.nih.gov/16911633/
  301. Bizzarri C, Pitocco D, Napoli N, et al; IMDIAB Group. No protective effect of calcitriol on beta-cell function in recent-onset type 1 diabetes: the IMDIAB XIII trial. Diabetes Care. 2010 Sep;33(9):1962-3. https://pubmed.ncbi.nlm.nih.gov/20805274/
  302. Walter M, Kaupper T, Adler K, et al. No effect of the 1alpha,25-dihydroxyvitamin D3 on beta-cell residual function and insulin requirement in adults with new-onset type 1 diabetes. Diabetes Care. 2010 Jul;33(7):1443-8. https://pubmed.ncbi.nlm.nih.gov/20357369/
  303. Bogdanou D, Penna-Martinez M, Filmann N, et al. T-lymphocyte and glycemic status after vitamin D treatment in type 1 diabetes: A randomized controlled trial with sequential crossover. Diabetes Metab Res Rev. 2017 Mar;33(3). https://pubmed.ncbi.nlm.nih.gov/27764529/
  304. Khan DM, Jamil A, Randhawa FA, et al. Efficacy of oral vitamin D on glycated haemoglobin (HbA1c) in type 2 diabetics having vitamin D deficiency - A randomized controlled trial. J Pak Med Assoc. 2018 May;68(5):694-697. https://pubmed.ncbi.nlm.nih.gov/29885163/
  305. Jorde R, Figenschau Y. Supplementation with cholecalciferol does not improve glycaemic control in diabetic subjects with normal serum 25-hydroxyvitamin D levels. Eur J Nutr. 2009 Sep;48(6):349-54. https://pubmed.ncbi.nlm.nih.gov/19370371/
  306. Ryu OH, Lee S, Yu J, et al. A prospective randomized controlled trial of the effects of vitamin D supplementation on long-term glycemic control in type 2 diabetes mellitus of Korea. Endocr J. 2014;61(2):167-76. https://pubmed.ncbi.nlm.nih.gov/24240575/
  307. Krul-Poel YH, Westra S, ten Boekel E, et al. Effect of Vitamin D Supplementation on Glycemic Control in Patients With Type 2 Diabetes (SUNNY Trial): A Randomized Placebo-Controlled Trial. Diabetes Care. 2015 Aug;38(8):1420-6. https://pubmed.ncbi.nlm.nih.gov/25972575/
  308. Omidian M, Mahmoudi M, Abshirini M, et al. Effects of vitamin D supplementation on depressive symptoms in type 2 diabetes mellitus patients: Randomized placebo-controlled double-blind clinical trial. Diabetes Metab Syndr. 2019 Jul-Aug;13(4):2375-2380. https://pubmed.ncbi.nlm.nih.gov/31405646/
  309. Figurová J, Dravecká I, Petríková J, et al. The effect of alfacalcidiol and metformin on metabolic disturbances in women with polycystic ovary syndrome. Horm Mol Biol Clin Investig. 2017 Mar 1;29(3):85-91. https://pubmed.ncbi.nlm.nih.gov/28157691
  310. Tehrani HG, Mostajeran F, Shahsavari S. The effect of calcium and vitamin D supplementation on menstrual cycle, body mass index and hyperandrogenism state of women with poly cystic ovarian syndrome. J Res Med Sci. 2014 Sep;19(9):875-80. https://pubmed.ncbi.nlm.nih.gov/25535503/
  311. Garg G, Kachhawa G, Ramot R, et al. Effect of vitamin D supplementation on insulin kinetics and cardiovascular risk factors in polycystic ovarian syndrome: a pilot study. Endocr Connect. 2015 Jun;4(2):108-16. https://pubmed.ncbi.nlm.nih.gov/25921345/
  312. Rashidi B, Haghollahi F, Shariat M, et al. The effects of calcium-vitamin D and metformin on polycystic ovary syndrome: a pilot study. Taiwan J Obstet Gynecol. 2009 Jun;48(2):142-7. https://pubmed.ncbi.nlm.nih.gov/19574176
  313. Firouzabadi Rd, Aflatoonian A, Modarresi S, et al. Therapeutic effects of calcium & vitamin D supplementation in women with PCOS. Complement Ther Clin Pract. 2012 May;18(2):85-8. https://pubmed.ncbi.nlm.nih.gov/22500844
  314. Fang F, Ni K, Cai Y, et al. Effect of vitamin D supplementation on polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Clin Pract. 2017 Feb;26:53-60. https://pubmed.ncbi.nlm.nih.gov/28107851/
  315. Song Y, Wang L, Pittas AG, et al. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care. 2013 May;36(5):1422-8. https://pubmed.ncbi.nlm.nih.gov/23613602/
  316. Zhang Y, Gong Y, Xue H, et al. Vitamin D and gestational diabetes mellitus: a systematic review based on data free of Hawthorne effect. BJOG. 2018 Jun;125(7):784-793. https://pubmed.ncbi.nlm.nih.gov/29244241/
  317. Gregoriou E, Mamais I, Tzanetakou I, et al. The Effects of Vitamin D Supplementation in Newly Diagnosed Type 1 Diabetes Patients: Systematic Review of Randomized Controlled Trials. Rev Diabet Stud. 2017 Summer-Fall;14(2-3):260-268. https://pubmed.ncbi.nlm.nih.gov/29145536/
  318. Ardabili HR, Gargari BP, Farzadi L. Vitamin D supplementation has no effect on insulin resistance assessment in women with polycystic ovary syndrome and vitamin D deficiency. Nutr Res. 2012 Mar;32(3):195-201. https://pubmed.ncbi.nlm.nih.gov/22464806
  319. Asemi Z, Foroozanfard F, Hashemi T, et al. Calcium plus vitamin D supplementation affects glucose metabolism and lipid concentrations in overweight and obese vitamin D deficient women with polycystic ovary syndrome. Clin Nutr. 2015 Aug;34(4):586-92. https://pubmed.ncbi.nlm.nih.gov/25300649
  320. Bonakdaran S, Mazloom Khorasani Z, Davachi B, et al. The effects of calcitriol on improvement of insulin resistance, ovulation and comparison with metformin therapy in PCOS patients: a randomized placebo- controlled clinical trial. Iran J Reprod Med. 2012 Sep;10(5):465-72. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169685
  321. Rahimi-Ardabili H, Pourghassem Gargari B, Farzadi L. Effects of vitamin D on cardiovascular disease risk factors in polycystic ovary syndrome women with vitamin D deficiency. J Endocrinol Invest. 2013 Jan;36(1):28-32. https://pubmed.ncbi.nlm.nih.gov/22453059
  322. Raja-Khan N, Shah J, Stetter CM, et al. High-dose vitamin D supplementation and measures of insulin sensitivity in polycystic ovary syndrome: a randomized, controlled pilot trial. Fertil Steril. 2014 Jun;101(6):1740-6. https://pubmed.ncbi.nlm.nih.gov/24636395
  323. Blau JE, Bauman V, Conway EM, et al. Canagliflozin triggers the FGF23/1,25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight. 2018 Apr 19;3(8):e99123 https://pubmed.ncbi.nlm.nih.gov/29669938
  324. de Jong MA, Petrykiv SI, Laverman GD, et al. Effects of Dapagliflozin on Circulating Markers of Phosphate Homeostasis. Clin J Am Soc Nephrol. 2019 Jan 7;14(1):66-73. https://pubmed.ncbi.nlm.nih.gov/30559106/
  325. Ben-Eltriki M, Deb S, Guns ES. Calcitriol in Combination Therapy for Prostate Cancer: Pharmacokinetic and Pharmacodynamic Interactions. J Cancer. 2016 Jan 15;7(4):391-407. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749360/
  326. Flaig TW, Barqawi A, Miller G. et al. A phase II trial of dexamethasone, vitamin D, and carboplatin in patients with hormone-refractory prostate cancer. Cancer. 2006;107(2):266–274. https://pubmed.ncbi.nlm.nih.gov/16779800/
  327. Beer TM, Garzotto M, Katovic NM. High-dose calcitriol and carboplatin in metastatic androgen-independent prostate cancer. Am J Clin Oncol. 2004;27(5):535–541. https://pubmed.ncbi.nlm.nih.gov/15596926/
  328. Wigington DP, Urben CM, Strugnell SA, Knutson JC. Combination study of 1,24(S)-dihydroxyvitamin D2 and chemotherapeutic agents on human breast and prostate cancer cell lines. Anticancer Res. 2004 Sep-Oct;24(5A):2905-12. PMID: 15517895. https://pubmed.ncbi.nlm.nih.gov/15517895/
  329. Kuittinen T, Rovio P, Staff S, Luukkaala T, Kallioniemi A, Grénman S, Laurila M, Mäenpää J. Paclitaxel, Carboplatin and 1,25-D3 Inhibit Proliferation of Endometrial Cancer Cells In Vitro. Anticancer Res. 2017 Dec;37(12):6575-6581. https://pubmed.ncbi.nlm.nih.gov/29187432/
  330. Kuittinen T, Rovio P, Luukkaala T, Laurila M, Grénman S, Kallioniemi A, Mäenpää J. Paclitaxel, Carboplatin and 1,25-D3 Inhibit Proliferation of Ovarian Cancer Cells In Vitro. Anticancer Res. 2020 Jun;40(6):3129-3138. https://pubmed.ncbi.nlm.nih.gov/32487607/
  331. Zhang Z, Zhang H, Hu Z, et al. Synergy of 1,25-dihydroxyvitamin D3 and carboplatin in growth suppression of skov-3 cells. Oncol. Lett. 2014, 8, 1348–1354. https://pubmed.ncbi.nlm.nih.gov/25120722/
  332. Moffatt KA, Johannes WU, Miller GJ. 1Alpha,25dihydroxyvitamin D3 and platinum drugs act synergistically to inhibit the growth of prostate cancer cell lines. Clin Cancer Res. 1999;5(3):695–703. https://pubmed.ncbi.nlm.nih.gov/10100724/
  333. Kennedy DA, Cooley K, Skidmore B, Fritz H, Campbell T, Seely D. Vitamin d: pharmacokinetics and safety when used in conjunction with the pharmaceutical drugs used in cancer patients: a systematic review. Cancers (Basel). 2013 Mar 11;5(1):255-80. https://pubmed.ncbi.nlm.nih.gov/24216707/
  334. Trump DL, Hershberger PA, Bernardi RJ, Ahmed S, Muindi J, Fakih M, Yu WD, Johnson CS. Anti-tumor activity of calcitriol: pre-clinical and clinical studies. J Steroid Biochem Mol Biol. 2004 May;89-90(1-5):519-26. https://pubmed.ncbi.nlm.nih.gov/15225831/
  335. Trump DL, Muindi J, Fakih M, Yu WD, Johnson CS. Vitamin D compounds: clinical development as cancer therapy and prevention agents. Anticancer Res. 2006 Jul- Aug;26(4A):2551-6. PMID: 16886663. https://pubmed.ncbi.nlm.nih.gov/16886663/
  336. Muindi JR, Peng Y, Potter DM, Hershberger PA, Tauch JS, Capozzoli MJ, Egorin MJ, Johnson CS, Trump DL. Pharmacokinetics of high-dose oral calcitriol: results from a phase 1 trial of calcitriol and paclitaxel. Clin Pharmacol Ther. 2002 Dec;72(6):648-59. https://pubmed.ncbi.nlm.nih.gov/12496746/
  337. Jennaro TS, Fang F, Kidwell KM, Smith EML, Vangipuram K, Burness ML, Griggs JJ, Van Poznak C, Hayes DF, Henry NL, Hertz DL. Vitamin D deficiency increases severity of paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat. 2020 Apr;180(3):707-714. https://pubmed.ncbi.nlm.nih.gov/32166478/
  338. Ma Y, Trump DL, Johnson CS. Vitamin D in combination cancer treatment. J Cancer. 2010 Jul 15;1:101-7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938072/
  339. Hershberger PA, Yu WD, Modzelewski RA, Rueger RM, Johnson CS, Trump DL. Calcitriol (1,25-dihydroxycholecalciferol) enhances paclitaxel antitumor activity in vitro and in vivo and accelerates paclitaxel-induced apoptosis. Clin Cancer Res. 2001;7:1043–51. https://pubmed.ncbi.nlm.nih.gov/11309356/
  340. Wang Q, Yang W, Uytingco MS, Christakos S, Wieder R. 1,25-Dihydroxyvitamin D3 and all-trans-retinoic acid sensitize breast cancer cells to chemotherapy-induced cell death. Cancer Res. 2000;60:2040–8. https://pubmed.ncbi.nlm.nih.gov/10766196/
  341. Koshizuka K, Koike M, Asou H. et al.Combined effect of vitamin D3 analogs and paclitaxel on the growth of MCF-7 breast cancer cells in vivo. Breast Cancer Res Treat. 1999;53:113–20. https://pubmed.ncbi.nlm.nih.gov/10326788/
  342. Wilhelm CA, Clor ZJ, Kelts JL. Effect of Vitamin D on Paclitaxel Efficacy in Triple-negative Breast Cancer Cell Lines. Anticancer Res. 2018 Sep;38(9):5043-5048. https://pubmed.ncbi.nlm.nih.gov/30194148/
  343. Khodaverdi S, Jafari A, Movahedzadeh F, Madani F, Yousefi Avarvand A, Falahatkar S. Evaluating Inhibitory Effects of Paclitaxel and Vitamin D3 Loaded Poly Lactic Glycolic Acid Co-Delivery Nanoparticles on the Breast Cancer Cell Line. Adv Pharm Bull. 2020 Jan;10(1):30-38. https://pubmed.ncbi.nlm.nih.gov/32002359/
  344. Koshizuka K, Koike M, Kubota T, Said J, Binderup L, Koeffler HP. Novel vitamin D3 analog (CB1093) when combined with paclitaxel and cisplatin inhibit growth of MCF-7 human breast cancer cells in vivo. Int J Oncol. 1998 Sep;13(3):421-8. https://pubmed.ncbi.nlm.nih.gov/9683773/
  345. Attia YM, El-Kersh DM, Ammar RA, Adel A, Khalil A, Walid H, Eskander K, Hamdy M, Reda N, Mohsen NE, Al-Toukhy GM, Mansour MT, Elmazar MM. Inhibition of aldehyde dehydrogenase-1 and p-glycoprotein-mediated multidrug resistance by curcumin and vitamin D3 increases sensitivity to paclitaxel in breast cancer. Chem Biol Interact. 2020 Jan 5;315:108865. https://pubmed.ncbi.nlm.nih.gov/31628941/
  346. Clinckspoor I, Verlinden L, Overbergh L, Korch C, Bouillon R, Mathieu C, Verstuyf A, Decallonne B. 1,25-dihydroxyvitamin D3 and a superagonistic analog in combination with paclitaxel or suberoylanilide hydroxamic acid have potent antiproliferative effects on anaplastic thyroid cancer. J Steroid Biochem Mol Biol. 2011 Mar;124(1-2):1-9. https://pubmed.ncbi.nlm.nih.gov/21182945/
  347. Baek S, Lee YS, Shim HE, Yoon S, Baek SY, Kim BS, Oh SO. Vitamin D3 regulates cell viability in gastric cancer and cholangiocarcinoma. Anat Cell Biol. 2011 Sep;44(3):204-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195824/
  348. Thakkar A, Wang B, Picon-Ruiz M, Buchwald P, Ince TA. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016 May;157(1):77-90. https://pubmed.ncbi.nlm.nih.gov/27120467/
  349. Keshavarzi Z, Janghorban R, Alipour S, Tahmasebi S, Jokar A. The effect of vitamin D and E vaginal suppositories on tamoxifen-induced vaginal atrophy in women with breast cancer. Support Care Cancer. 2019 Apr;27(4):1325-1334. https://pubmed.ncbi.nlm.nih.gov/30729333/
  350. Antunes MV, Timm TA, de Oliveira V, Staudt DE, Raymundo S, Gössling G, Biazús JV, Cavalheiro JA, Rosa DD, Wallemacq P, Haufroid V, Linden R, Schwartsmann G. Influence of CYP2D6 and CYP3A4 Phenotypes, Drug Interactions, and Vitamin D Status on Tamoxifen Biotransformation. Ther Drug Monit. 2015 Dec;37(6):733-44. https://pubmed.ncbi.nlm.nih.gov/25853922/
  351. Kim HJ, Koh BS, Yu JH, Lee JW, Son BH, Kim SB, Ahn SH. Changes in serum hydroxyvitamin D levels of breast cancer patients during tamoxifen treatment or chemotherapy in premenopausal breast cancer patients. Eur J Cancer. 2014 May;50(8):1403-11. https://pubmed.ncbi.nlm.nih.gov/24703104/
  352. Teft WA, Gong IY, Dingle B, Potvin K, Younus J, Vandenberg TA, Brackstone M, Perera FE, Choi YH, Zou G, Legan RM, Tirona RG, Kim RB. CYP3A4 and seasonal variation in vitamin D status in addition to CYP2D6 contribute to therapeutic endoxifen level during tamoxifen therapy. Breast Cancer Res Treat. 2013 May;139(1):95-105. https://pubmed.ncbi.nlm.nih.gov/23580071/
  353. Vink-van Wijngaarden T, Pols HA, Buurman CJ. et al.Inhibition of breast cancer cell growth by combined treatment with vitamin D3 analogues and tamoxifen. Cancer Res. 1994;54:5711–7. https://pubmed.ncbi.nlm.nih.gov/7923220/
  354. Abe-Hashimoto J, Kikuchi T, Matsumoto T, Nishii Y, Ogata E, Ikeda K. Antitumor effect of 22-oxa-calcitriol, a noncalcemic analogue of calcitriol, in athymic mice implanted with human breast carcinoma and its synergism with tamoxifen. Cancer Res. 1993;53:2534–7. https://pubmed.ncbi.nlm.nih.gov/8495416/
  355. Christensen GL, Jepsen JS, Fog CK, Christensen IJ, Lykkesfeldt AE. Sequential versus combined treatment of human breast cancer cells with antiestrogens and the vitamin D analogue EB1089 and evaluation of predictive markers for vitamin D treatment. Breast Cancer Res Treat. 2004 May;85(1):53-63. https://pubmed.ncbi.nlm.nih.gov/15039597/
  356. Zheng W, Duan B, Zhang Q, Ouyang L, Peng W, Qian F, Wang Y, Huang S. Vitamin D-induced vitamin D receptor expression induces tamoxifen sensitivity in MCF-7 stem cells via suppression of Wnt/β-catenin signaling. Biosci Rep. 2018 Dec 7;38(6):BSR20180595. https://pubmed.ncbi.nlm.nih.gov/30314996/
  357. Zhang L, Zhai X, He Z. [Modulating effect of vitamin D3 in vitro on EGFR mRNA expression of human breast cancer cell lines]. Zhonghua Zhong Liu Za Zhi. 2000 May;22(3):205-7. Chinese. PMID: 11778232. https://pubmed.ncbi.nlm.nih.gov/11778232/
  358. Abu El Maaty MA, Wölfl S. Effects of 1,25(OH)₂D₃ on Cancer Cells and Potential Applications in Combination with Established and Putative Anti-Cancer Agents. Nutrients. 2017 Jan 23;9(1):87. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295131/
  359. Beer TM, Ryan CW, Venner PM, et al. Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen-independent prostate cancer: a report from the ASCENT Investigators. J Clin Oncol. 2007;25(6):669–674. https://pubmed.ncbi.nlm.nih.gov/17308271/
  360. Beer TM, Ryan CW, Venner PM. et al. Intermittent chemotherapy in patients with metastatic androgen-independent prostate cancer: results from ASCENT, a double-blinded, randomized comparison of high-dose calcitriol plus docetaxel with placebo plus docetaxel. Cancer. 2008;112(2):326–330. https://pubmed.ncbi.nlm.nih.gov/17960793/
  361. Shamseddine A, Farhat FS, Elias E, Khauli RB, Saleh A, Bulbul MA. High-dose calcitriol, docetaxel and zoledronic acid in patients with castration-resistant prostate cancer: a phase II study. Urol Int. 2013;90(1):56–61. https://pubmed.ncbi.nlm.nih.gov/23146834/
  362. Petrioli R, Pascucci A, Francini E, Marsili S, Sciandivasci A, De Rubertis G, Barbanti G, Manganelli A, Salvestrini F, Francini G. Weekly high-dose calcitriol and docetaxel in patients with metastatic hormone-refractory prostate cancer previously exposed to docetaxel. BJU Int. 2007 Oct;100(4):775-9. https://pubmed.ncbi.nlm.nih.gov/17535276/
  363. Tiffany NM, Ryan CW, Garzotto M, Wersinger EM, Beer TM. High dose pulse calcitriol, docetaxel and estramustine for androgen independent prostate cancer: a phase I/II study. J Urol. 2005;174(3):888–892. https://pubmed.ncbi.nlm.nih.gov/16093981/
  364. Beer TM, Eilers KM, Garzotto M, Egorin MJ, Lowe BA, Henner WD. Weekly high-dose calcitriol and docetaxel in metastatic androgen-independent prostate cancer. J Clin Oncol. 2003;21(1):123–128. https://pubmed.ncbi.nlm.nih.gov/12506180/
  365. Beer TM, Eilers KM, Garzotto M, et al. Androgen-independent prostate Cancer (AIPC) treatment with weekly high-dose calcitriol and docetaxel, Am. Soc. Clin. Oncol. 21 (2002) 177a.
  366. Blanke CD, Beer TM, Todd K, Mori M, Stone M, Lopez C. Phase II study of calcitriol-enhanced docetaxel in patients with previously untreated metastatic or locally advanced pancreatic cancer. Invest New Drugs. 2009 Aug;27(4):374-8. https://pubmed.ncbi.nlm.nih.gov/18843448/
  367. Medioni J, Deplanque G, Ferrero JM, Maurina T, Rodier JM, Raymond E, Allyon J, Maruani G, Houillier P, Mackenzie S, Renaux S, Dufour-Lamartinie JF, Elaidi R, Lerest C, Oudard S. Phase I safety and pharmacodynamic of inecalcitol, a novel VDR agonist with docetaxel in metastatic castration-resistant prostate cancer patients. Clin Cancer Res. 2014 Sep 1;20(17):4471-7.
  368. Ramnath N, Daignault-Newton S, Dy GK, Muindi JR, Adjei A, Elingrod VL, Kalemkerian GP, Cease KB, Stella PJ, Brenner DE, Troeschel S, Johnson CS, Trump DL. A phase I/II pharmacokinetic and pharmacogenomic study of calcitriol in combination with cisplatin and docetaxel in advanced non-small-cell lung cancer. Cancer Chemother Pharmacol. 2013 May;71(5):1173-82. https://pubmed.ncbi.nlm.nih.gov/23435876/
  369. Beer TM, Venner PM, Ryan CW, Petrylak DP, Chatta G, Dean Ruether J, Chi KN, Curd JG, DeLoughery TG. High dose calcitriol may reduce thrombosis in cancer patients. Br J Haematol. 2006 Nov;135(3):392-4. https://pubmed.ncbi.nlm.nih.gov/16984385/
  370. Mitsuhata N, Itoh S, Watanabe Y. [Intra-arterial docetaxel chemotherapy with high-dose calcitriol in relapsing metastatic prostate cancer]. Gan To Kagaku Ryoho. 2004 May;31(5):787-91. Japanese. PMID: 15170994. https://pubmed.ncbi.nlm.nih.gov/15170994/
  371. Beer TM, Hough KM, Garzotto M, Lowe BA, Henner WD. Weekly high-dose calcitriol and docetaxel in advanced prostate cancer. Semin Oncol. 2001 Aug;28(4 Suppl 15):49-55. https://pubmed.ncbi.nlm.nih.gov/11685729/
  372. Scher HI, Jia X, Chi K. et al. Randomized, open-label phase III trial of docetaxel plus high-dose calcitriol versus docetaxel plus prednisone for patients with castration-resistant prostate cancer. J Clin Oncol. 2011;29(16):2191–2198. https://pubmed.ncbi.nlm.nih.gov/21483004/
  373. Attia S, Eickhoff J, Wilding G, McNeel D, Blank J, Ahuja H, Jumonville A, Eastman M, Shevrin D, Glode M, Alberti D, Staab MJ, Horvath D, Straus J, Marnocha R, Liu G. Randomized, double-blinded phase II evaluation of docetaxel with or without doxercalciferol in patients with metastatic, androgen- independent prostate cancer. Clin Cancer Res. 2008 Apr 15;14(8):2437-43. https://pubmed.ncbi.nlm.nih.gov/18413835/
  374. Santini D, Galluzzo S, Vincenzi B, Zoccoli A, Ferraro E, Lippi C, Altomare V, Tonini G, Bertoldo F. Longitudinal evaluation of vitamin D plasma levels during anthracycline- and docetaxel-based adjuvant chemotherapy in early-stage breast cancer patients. Ann Oncol. 2010 Jan;21(1):185-6. https://pubmed.ncbi.nlm.nih.gov/19892747/
  375. Young MR, Lathers DM. Combination docetaxel plus vitamin D(3) as an immune therapy in animals bearing squamous cell carcinomas. Otolaryngol Head Neck Surg. 2005 Oct;133(4):611-8. https://pubmed.ncbi.nlm.nih.gov/16213938/
  376. Ting HJ, Hsu J, Bao BY, Lee YF. Docetaxel-induced growth inhibition and apoptosis in androgen independent prostate cancer cells are enhanced by 1alpha,25-dihydroxyvitamin D3. Cancer Lett. 2007;247:122–9. https://pubmed.ncbi.nlm.nih.gov/16644109/
  377. Wietrzyk J, Milczarek M, Kutner A. The effect of combined treatment on head and neck human cancer cell lines with novel analogs of calcitriol and cytostatics. Oncol Res. 2007;16(11):517-25. https://pubmed.ncbi.nlm.nih.gov/18306931/
  378. Maj E, Filip-Psurska B, Milczarek M, Psurski M, Kutner A, Wietrzyk J. Vitamin D derivatives potentiate the anticancer and anti-angiogenic activity of tyrosine kinase inhibitors in combination with cytostatic drugs in an A549 non- small cell lung cancer model. Int J Oncol. 2018 Feb;52(2):337-366. https://pubmed.ncbi.nlm.nih.gov/29345296/
  379. Kailajärvi ME, Salminen EK, Paija OM, Virtanent AM, Leino AE, Irjala KA. Serum bone markers in breast cancer patients during 5-fluorouracil, epirubicin and cyclophosphamide (FEC) therapy. Anticancer Res. 2004 Mar-Apr;24(2C):1271-4. PMID: 15154659. https://pubmed.ncbi.nlm.nih.gov/15154659/
  380. Hidalgo M, Rinaldi D, Medina G, Griffin T, Turner J, Von Hoff DD. A phase I trial of topical topitriol (calcitriol, 1,25-dihydroxyvitamin D3) to prevent chemotherapy-induced alopecia. Anticancer Drugs. 1999 Apr;10(4):393-5. https://pubmed.ncbi.nlm.nih.gov/10378674/
  381. Chen G, Baechle A, Nevins TD, Oh S, Harmon C, Stacey DW. Protection against cyclophosphamide-induced alopecia and inhibition of mammary tumor growth by topical 1,25-dihydroxyvitamin D3 in mice. Int J Cancer. 1998 Jan 19;75(2):303-9. https://pubmed.ncbi.nlm.nih.gov/9462723/
  382. Wietrzyk J, Nevozhay D, Milczarek M, Filip B, Kutner A. Toxicity and antitumor activity of the vitamin D analogs PRI-1906 and PRI-1907 in combined treatment with cyclophosphamide in a mouse mammary cancer model. Cancer Chemother Pharmacol. 2008 Oct;62(5):787-97. https://pubmed.ncbi.nlm.nih.gov/18188568/
  383. Wang W, Gao Y, Liu H, Feng W, Li X, Guo J, Li M. Eldecalcitol, an active vitamin D analog, effectively prevents cyclophosphamide-induced osteoporosis in rats. Exp Ther Med. 2019 Sep;18(3):1571-1580. https://pubmed.ncbi.nlm.nih.gov/31410111/
  384. Fan C, Georgiou KR, Morris HA, McKinnon RA, Keefe DMK, Howe PR, Xian CJ. Combination breast cancer chemotherapy with doxorubicin and cyclophosphamide damages bone and bone marrow in a female rat model. Breast Cancer Res Treat. 2017 Aug;165(1):41-51. https://pubmed.ncbi.nlm.nih.gov/28550626/
  385. Liu H, Feng X, Wu S, Zong T, Li B, Zhang Z. Vitamin D Resists Cyclophosphamide-Induced Genomic and DNA Damage in CHL Cells In Vitro and in Mice In Vivo. Nutr Cancer. 2019;71(6):1030-1039. https://pubmed.ncbi.nlm.nih.gov/31038367/
  386. Chandler PD, Scott JB, Drake BF, et al. Risk of hypercalcemia in blacks taking hydrochlorothiazide and vitamin D. Am J Med. 2014 Aug;127(8):772-8. https://pubmed.ncbi.nlm.nih.gov/24657333/
  387. Sakhaee K, Nicar MJ, Glass K, et al. Reduction in intestinal calcium absorption by hydrochlorothiazide in postmenopausal osteoporosis. J Clin Endocrinol Metab. 1984 Dec;59(6):1037-43. https://pubmed.ncbi.nlm.nih.gov/6490791/
  388. Sakhaee K, Zisman A, Poindexter JR, et al. Metabolic effects of thiazide and 1,25-(OH)2 vitamin D in postmenopausal osteoporosis. Osteoporos Int. 1993 Jul;3(4):209-14. https://pubmed.ncbi.nlm.nih.gov/8338977/
  389. Testa A, Fant V, De Rosa A, et al. Calcitriol plus hydrochlorothiazide prevents transient post-thyroidectomy hypocalcemia. Horm Metab Res. 2006 Dec;38(12):821-6. https://pubmed.ncbi.nlm.nih.gov/17163358/
  390. Dawson-Hughes B, Harris S. Thiazides and seasonal bone change in healthy postmenopausal women. Bone Miner. 1993 Apr;21(1):41-51. https://pubmed.ncbi.nlm.nih.gov/8324419/
  391. Riis B, Christiansen C. Actions of thiazide on vitamin D metabolism: a controlled therapeutic trial in normal women early in the postmenopause. Metabolism. 1985 May;34(5):421-4. https://pubmed.ncbi.nlm.nih.gov/3887100/
  392. Sohl E, van Schoor NM, de Jongh RT, et al. The impact of medication on vitamin D status in older individuals. Eur J Endocrinol. 2012 Mar;166(3):477-85. https://pubmed.ncbi.nlm.nih.gov/22170799
  393. Schleithoff SS, Zittermann A, Tenderich G, et al. Combined calcium and vitamin D supplementation is not superior to calcium supplementation alone in improving disturbed bone metabolism in patients with congestive heart failure. Eur J Clin Nutr. 2008 Dec;62(12):1388-94. https://pubmed.ncbi.nlm.nih.gov/17684525/
  394. Rejnmark L, Vestergaard P, Heickendorff L, et al. Loop diuretics increase bone turnover and decrease BMD in osteopenic postmenopausal women: results from a randomized controlled study with bumetanide. J Bone Miner Res. 2006 Jan;21(1):163-70. https://pubmed.ncbi.nlm.nih.gov/16355285/
  395. Calarge CA, Mills JA, Ziegler EE, et al. Calcium and Vitamin D Supplementation in Boys with Risperidone-Induced Hyperprolactinemia: A Randomized, Placebo-Controlled Pilot Study. J Child Adolesc Psychopharmacol. 2018 Mar;28(2):145-150. https://pubmed.ncbi.nlm.nih.gov/29112461/
  396. Krivoy A, Onn R, Vilner Y, et al. Vitamin D Supplementation in Chronic Schizophrenia Patients Treated with Clozapine: A Randomized, Double-Blind, Placebo-controlled Clinical Trial. EBioMedicine. 2017 Dec;26:138-145. https://pubmed.ncbi.nlm.nih.gov/29226809/
  397. Sheikhmoonesi F, Zarghami M, Mamashli S, et al. Effectiveness of Vitamin D Supplement Therapy in Chronic Stable Schizophrenic Male Patients: A Randomized Controlled Trial. Iran J Pharm Res. 2016 Fall;15(4):941-950. https://pubmed.ncbi.nlm.nih.gov/28243293/
  398. Thakurathi N, Stock S, Oppenheim CE, et al. Open-label pilot study on vitamin D₃ supplementation for antipsychotic-associated metabolic anomalies. Int Clin Psychopharmacol. 2013 Sep;28(5):275-82. https://pubmed.ncbi.nlm.nih.gov/23694999/
  399. Nwosu BU, Meltzer B, Maranda L, et al. A potential role for adjunctive vitamin D therapy in the management of weight gain and metabolic side effects of second-generation antipsychotics. J Pediatr Endocrinol Metab. 2011;24(9-10):619-26. https://pubmed.ncbi.nlm.nih.gov/22145446/
  400. Ristic S, Zivanovic S, Milovanovic DR, et al. Vitamin D Deficiency and Associated Factors in Patients with Mental Disorders Treated in Routine Practice. J Nutr Sci Vitaminol (Tokyo). 2017;63(2):85-95. https://pubmed.ncbi.nlm.nih.gov/28552881/
  401. Raffin M, Bonnot O, Giannitelli M, et al. Hormonal Risk Factors for Osteoporosis: Different Profile Among Antipsychotics. J Child Adolesc Psychopharmacol. 2018 Dec;28(10):719-726. https://pubmed.ncbi.nlm.nih.gov/30421978/
  402. Schneider B, Weber B, Frensch A, et al. Vitamin D in schizophrenia, major depression and alcoholism. J Neural Transm (Vienna). 2000;107(7):839-42. https://pubmed.ncbi.nlm.nih.gov/11005548/
  403. Akinlade KS, Olaniyan OA, Lasebikan VO, et al. Vitamin D Levels in Different Severity Groups of Schizophrenia. Front Psychiatry. 2017 Jun 13;8:105. https://pubmed.ncbi.nlm.nih.gov/28659835/
  404. Rey-Sánchez P, Lavado-García JM, Canal-Macías ML, et al. Ultrasound bone mass in schizophrenic patients on antipsychotic therapy. Hum Psychopharmacol. 2009 Jan;24(1):49-54. https://pubmed.ncbi.nlm.nih.gov/19016257/
  405. McGrath J, Saari K, Hakko H, Jokelainen J, Jones P, Järvelin MR, Chant D, Isohanni M. Vitamin D supplementation during the first year of life and risk of schizophrenia: a Finnish birth cohort study. Schizophr Res. 2004 Apr 1;67(2-3):237-45 https://pubmed.ncbi.nlm.nih.gov/14984883/
  406. Shivakumar V, Kalmady SV, Amaresha AC, et al. Serum vitamin D and hippocampal gray matter volume in schizophrenia. Psychiatry Res. 2015 Aug 30;233(2):175-9. https://pubmed.ncbi.nlm.nih.gov/26163386/
  407. Dang R, Jiang P, Cai H, et al. Vitamin D deficiency exacerbates atypical antipsychotic-induced metabolic side effects in rats: involvement of the INSIG/SREBP pathway. Eur Neuropsychopharmacol. 2015 Aug;25(8):1239-47. https://pubmed.ncbi.nlm.nih.gov/26003080/
  408. Kota BP, Abdul MI, Allen JD, et al. Effect of vitamin D3 supplementation on the pharmacokinetics of digoxin--a pilot study. Fundam Clin Pharmacol. 2012 Aug;26(4):543-8. https://pubmed.ncbi.nlm.nih.gov/21477267/
  409. Malihi Z, Wu Z, Stewart AW, et al. Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: a systematic review and meta-analysis. Am J Clin Nutr. 2016 Oct;104(4):1039-1051 https://pubmed.ncbi.nlm.nih.gov/27604776/
  410. Malihi Z, Wu Z, Lawes CMM, et al. Adverse events from large dose vitamin D supplementation taken for one year or longer. J Steroid Biochem Mol Biol. 2019 Apr;188:29-37. https://pubmed.ncbi.nlm.nih.gov/30529281/
  411. Pincus M. Management of digoxin toxicity. Aust Prescr. 2016 Feb;39(1):18-20. https://pubmed.ncbi.nlm.nih.gov/27041802/
  412. Rehman R, Hai O. Digitalis Toxicity. 2020 Jul 17. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020 Jan–. https://pubmed.ncbi.nlm.nih.gov/29083729/
  413. Shi DD, Wang Y, Guo JJ, et al. Vitamin D Enhances Efficacy of Oral Nifedipine in Treating Preeclampsia with Severe Features: A Double Blinded, Placebo-Controlled and Randomized Clinical Trial. Front Pharmacol. 2017 Nov 24;8:865. https://pubmed.ncbi.nlm.nih.gov/29225576/
  414. Chen WR, Liu ZY, Shi Y, et al. Vitamin D and nifedipine in the treatment of Chinese patients with grades I-II essential hypertension: a randomized placebo-controlled trial. Atherosclerosis. 2014 Jul;235(1):102-9. https://pubmed.ncbi.nlm.nih.gov/24942709/
  415. Zhou SF. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. 2008 May;9(4):310-22. https://pubmed.ncbi.nlm.nih.gov/18473749/
  416. Bar-Or D, Gasiel Y. Calcium and calciferol antagonise effect of verapamil in atrial fibrillation. Br Med J (Clin Res Ed). 1981 May 16;282(6276):1585-6. https://pubmed.ncbi.nlm.nih.gov/6786574/
  417. Wu Z, Camargo CA Jr, Malihi Z, et al. Monthly vitamin D supplementation, pain, and pattern of analgesic prescription: secondary analysis from the randomized, double-blind, placebo-controlled Vitamin D Assessment study. Pain. 2018 Jun;159(6):1074-1082. https://pubmed.ncbi.nlm.nih.gov/29494417/
  418. Brinkhuizen T, Frencken KJ, Nelemans PJ, et al. The effect of topical diclofenac 3% and calcitriol 3 μg/g on superficial basal cell carcinoma (sBCC) and nodular basal cell carcinoma (nBCC): A phase II, randomized controlled trial. J Am Acad Dermatol. 2016 Jul;75(1):126-34. https://pubmed.ncbi.nlm.nih.gov/27067393/
  419. Pommergaard HC, Burcharth J, Rosenberg J, et al. Aspirin, Calcitriol, and Calcium Do Not Prevent Adenoma Recurrence in a Randomized Controlled Trial. Gastroenterology. 2016 Jan;150(1):114-122.e4. https://pubmed.ncbi.nlm.nih.gov/26404953/
  420. Qin W, Smith C, Jensen M, et al. Vitamin D favorably alters the cancer promoting prostaglandin cascade. Anticancer Res. 2013 Sep;33(9):3861-6. https://pubmed.ncbi.nlm.nih.gov/24023320/
  421. Hopkins MH, Owen J, Ahearn T, et al. Effects of supplemental vitamin D and calcium on biomarkers of inflammation in colorectal adenoma patients: a randomized, controlled clinical trial. Cancer Prev Res (Phila). 2011 Oct;4(10):1645-54. https://pubmed.ncbi.nlm.nih.gov/21724580/
  422. Srinivas S, Feldman D. A phase II trial of calcitriol and naproxen in recurrent prostate cancer. Anticancer Res. 2009 Sep;29(9):3605-10. https://pubmed.ncbi.nlm.nih.gov/19667155/
  423. Vestergaard P, Hermann P, Jensen JE, et al. Effects of paracetamol, non-steroidal anti-inflammatory drugs, acetylsalicylic acid, and opioids on bone mineral density and risk of fracture: results of the Danish Osteoporosis Prevention Study (DOPS). Osteoporos Int. 2012 Apr;23(4):1255-65. https://pubmed.ncbi.nlm.nih.gov/21710339/
  424. Khezri S, Atashbar S, Azizian S, et al. Calcitriol Reduces Adverse Effects of Diclofenac on Mitochondrial Function in Isolated Rat Heart Mitochondria. Drug Res (Stuttg). 2020 Jul;70(7):317-324. https://pubmed.ncbi.nlm.nih.gov/32413916/
  425. Gavrilov V, Steiner M, Shany S. The combined treatment of 1,25-dihydroxyvitamin D3 and a non-steroid anti-inflammatory drug is highly effective in suppressing prostate cancer cell line (LNCaP) growth. Anticancer Res. 2005 Sep-Oct;25(5):3425-9. https://pubmed.ncbi.nlm.nih.gov/16101159/
  426. Moreno J, Krishnan AV, Swami S, et al. Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells. Cancer Res. 2005 Sep 1;65(17):7917-25. https://pubmed.ncbi.nlm.nih.gov/16140963/
  427. Fava A, Petri M. Systemic lupus erythematosus: Diagnosis and clinical management. J Autoimmun. 2019 Jan;96:1-13. https://pubmed.ncbi.nlm.nih.gov/30448290/
  428. Durcan L, Petri M. Immunomodulators in SLE: Clinical evidence and immunologic actions. J Autoimmun. 2016 Nov;74:73-84. https://pubmed.ncbi.nlm.nih.gov/27371107/
  429. Lima GL, Paupitz J, Aikawa NE, et al. Vitamin D Supplementation in Adolescents and Young Adults With Juvenile Systemic Lupus Erythematosus for Improvement in Disease Activity and Fatigue Scores: A Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Care Res (Hoboken). 2016 Jan;68(1):91-8. https://pubmed.ncbi.nlm.nih.gov/25988278/
  430. Aranow C, Kamen DL, Dall'Era M, et al. Randomized, Double-Blind, Placebo-Controlled Trial of the Effect of Vitamin D3 on the Interferon Signature in Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol. 2015 Jul;67(7):1848-57. https://pubmed.ncbi.nlm.nih.gov/25777546/
  431. Piantoni S, Andreoli L, Scarsi M, et al. Phenotype modifications of T-cells and their shift toward a Th2 response in patients with systemic lupus erythematosus supplemented with different monthly regimens of vitamin D. Lupus. 2015 Apr;24(4-5):490-8. https://pubmed.ncbi.nlm.nih.gov/25801892/
  432. Andreoli L, Dall'Ara F, Piantoni S, et al. A 24-month prospective study on the efficacy and safety of two different monthly regimens of vitamin D supplementation in pre-menopausal women with systemic lupus erythematosus. Lupus. 2015 Apr;24(4-5):499-506. https://pubmed.ncbi.nlm.nih.gov/25801893/
  433. Petri M, Bello KJ, Fang H, et al. Vitamin D in systemic lupus erythematosus: modest association with disease activity and the urine protein-to-creatinine ratio. Arthritis Rheum. 2013 Jul;65(7):1865-71. https://pubmed.ncbi.nlm.nih.gov/23553077/
  434. Terrier B, Derian N, Schoindre Y, et al. Restoration of regulatory and effector T cell balance and B cell homeostasis in systemic lupus erythematosus patients through vitamin D supplementation. Arthritis Res Ther. 2012 Oct 17;14(5):R221. https://pubmed.ncbi.nlm.nih.gov/23075451/
  435. Ruiz-Irastorza G, Gordo S, Olivares N, et al. Changes in vitamin D levels in patients with systemic lupus erythematosus: Effects on fatigue, disease activity, and damage. Arthritis Care Res (Hoboken). 2010 Aug;62(8):1160-5. https://pubmed.ncbi.nlm.nih.gov/20235208/
  436. Entrenas Castillo M, Entrenas Costa LM, Vaquero Barrios JM, et al. "Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study". J Steroid Biochem Mol Biol. 2020 Oct;203:105751. https://pubmed.ncbi.nlm.nih.gov/32871238/
  437. El-Banna HS, Gado SE. Vitamin D: does it help Tregs in active rheumatoid arthritis patients. Expert Rev Clin Immunol. 2020 Aug 25:1-7. https://pubmed.ncbi.nlm.nih.gov/32783547/
  438. Cutillas-Marco E, Marquina-Vila A, Grant WB, et al. Vitamin D and cutaneous lupus erythematosus: effect of vitamin D replacement on disease severity. Lupus. 2014 Jun;23(7):615-23. https://pubmed.ncbi.nlm.nih.gov/24503020/
  439. Bigelsen S. Case report: stage 4 pancreatic cancer to remission using paricalcitol and hydroxychloroquine in addition to traditional chemotherapy. Ann Pancreat Cancer 2018;1:AB091. http://apc.amegroups.com/article/view/4269/5197
  440. Bockow B, Kaplan TB. Refractory immune thrombocytopenia successfully treated with high-dose vitamin D supplementation and hydroxychloroquine: two case reports. J Med Case Rep. 2013 Apr 4;7:91. https://pubmed.ncbi.nlm.nih.gov/23556539/
  441. Gheita TA, Sayed S, Gheita HA, et al. Vitamin D status in rheumatoid arthritis patients: relation to clinical manifestations, disease activity, quality of life and fibromyalgia syndrome. Int J Rheum Dis. 2016 Mar;19(3):294-9. https://pubmed.ncbi.nlm.nih.gov/25291242/
  442. Sahebari M, Mirfeizi Z, Rezaieyazdi Z, et al. 25(OH) vitamin D serum values and rheumatoid arthritis disease activity (DA S28 ESR). Caspian J Intern Med. 2014 Summer;5(3):148-55. https://pubmed.ncbi.nlm.nih.gov/25202442/
  443. Gao CC, Liu SY, Wu ZZ, et al. Severe vitamin D deficiency increases the risk for moderate to severe disease activity in Chinese patients with SLE. Lupus. 2016 Oct;25(11):1224-9. https://pubmed.ncbi.nlm.nih.gov/26921268/
  444. Mok CC, Bro ET, Ho LY, et al. Serum 25-hydroxyvitamin D3 levels and flares of systemic lupus erythematosus: a longitudinal cohort analysis. Clin Rheumatol. 2018 Oct;37(10):2685-2692. https://pubmed.ncbi.nlm.nih.gov/30014357/
  445. Cutillas-Marco E, Morales-Suárez-Varela M, Marquina-Vila A, et al. Serum 25-hydroxyvitamin D levels in patients with cutaneous lupus erythematosus in a Mediterranean region. Lupus. 2010 Jun;19(7):810-4. https://pubmed.ncbi.nlm.nih.gov/20305048/
  446. Ruiz-Irastorza G, Egurbide MV, Olivares N, et al. Vitamin D deficiency in systemic lupus erythematosus: prevalence, predictors and clinical consequences. Rheumatology (Oxford). 2008 Jun;47(6):920-3. https://pubmed.ncbi.nlm.nih.gov/18411213/
  447. Peracchi OA, Terreri MT, Munekata RV, et al. Low serum concentrations of 25-hydroxyvitamin D in children and adolescents with systemic lupus erythematosus. Braz J Med Biol Res. 2014 Aug;47(8):721-6. https://pubmed.ncbi.nlm.nih.gov/25055165/
  448. Eloi M, Horvath DV, Ortega JC, et al. 25-Hydroxivitamin D Serum Concentration, Not Free and Bioavailable Vitamin D, Is Associated with Disease Activity in Systemic Lupus Erythematosus Patients. PLoS One. 2017 Jan 13;12(1):e0170323. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234837/
  449. Müller K, Kriegbaum NJ, Baslund B, et al. Vitamin D3 metabolism in patients with rheumatic diseases: low serum levels of 25-hydroxyvitamin D3 in patients with systemic lupus erythematosus. Clin Rheumatol. 1995 Jul;14(4):397-400. https://pubmed.ncbi.nlm.nih.gov/7586974/
  450. Amital H, Szekanecz Z, Szücs G, et al. Serum concentrations of 25-OH vitamin D in patients with systemic lupus erythematosus (SLE) are inversely related to disease activity: is it time to routinely supplement patients with SLE with vitamin D? Ann Rheum Dis. 2010 Jun;69(6):1155-7. https://pubmed.ncbi.nlm.nih.gov/20439290/
  451. Huisman AM, White KP, Algra A, et al. Vitamin D levels in women with systemic lupus erythematosus and fibromyalgia. J Rheumatol. 2001 Nov;28(11):2535-9. https://pubmed.ncbi.nlm.nih.gov/11708429/
  452. Barré PE, Gascon-Barré M, Meakins JL, et al. Hydroxychloroquine treatment of hypercalcemia in a patient with sarcoidosis undergoing hemodialysis. Am J Med. 1987 Jun;82(6):1259-62. https://pubmed.ncbi.nlm.nih.gov/3605143/
  453. Bigelsen S. Evidence-based complementary treatment of pancreatic cancer: a review of adjunct therapies including paricalcitol, hydroxychloroquine, intravenous vitamin C, statins, metformin, curcumin, and aspirin. Cancer Manag Res. 2018 Jul 13;10:2003-2018. https://pubmed.ncbi.nlm.nih.gov/30034255/
  454. Teixeira NDSCCA, Pereira BM, Oliveira IKF, et al. Effect of vitamin D3 supplementation on HIV-infected adults: a systematic reviewVitamin Dӡ Supplementation on HIV-Infected Adults: A Systematic Review. Nutr Hosp. 2019 Oct 17;36(5):1205-1212. https://pubmed.ncbi.nlm.nih.gov/31526009/
  455. Alvarez N, Aguilar-Jimenez W, Rugeles MT. The Potential Protective Role of Vitamin D Supplementation on HIV-1 Infection. Front Immunol. 2019 Sep 25;10:2291. https://pubmed.ncbi.nlm.nih.gov/31611877/
  456. Schall JI, Hediger ML, Zemel BS, et al. Comprehensive Safety Monitoring of 12-Month Daily 7000-IU Vitamin D3 Supplementation in Human Immunodeficiency Virus-Infected Children and Young Adults. JPEN. Journal of Parenteral and Enteral Nutrition. 2016 Sep;40(7):1057-1063. https://europepmc.org/article/med/26160254#impact
  457. Muhammad J, Chan ES, Brown TT, et al. Vitamin D Supplementation Does Not Affect Metabolic Changes Seen With ART Initiation. Open Forum Infect Dis. 2017 Dec 11;4(4):ofx210. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726464/
  458. van den Bout-van den Beukel CJ, van den Bos M, Oyen WJ, et al. The effect of cholecalciferol supplementation on vitamin D levels and insulin sensitivity is dose related in vitamin D-deficient HIV-1-infected patients. HIV Med. 2008 Oct;9(9):771-9. https://pubmed.ncbi.nlm.nih.gov/18754805/
  459. Chun RF, Liu NQ, Lee T, et al. Vitamin D supplementation and antibacterial immune responses in adolescents and young adults with HIV/AIDS. J Steroid Biochem Mol Biol. 2015 Apr;148:290-7. https://pubmed.ncbi.nlm.nih.gov/25092518/
  460. Lachmann R, Bevan MA, Kim S, et al. A comparative phase 1 clinical trial to identify anti-infective mechanisms of vitamin D in people with HIV infection. AIDS. 2015 Jun 19;29(10):1127-35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516350/
  461. Noe S, Heldwein S, Pascucchi R, et al. Cholecalciferol 20 000 IU Once Weekly in HIV-Positive Patients with Low Vitamin D Levels: Result from a Cohort Study. J Int Assoc Provid AIDS Care. 2017 Jul/Aug;16(4):315-320. https://pubmed.ncbi.nlm.nih.gov/28393662/
  462. Falasca K, Ucciferri C, Di Nicola M, et al. Different strategies of 25OH vitamin D supplementation in HIV-positive subjects. Int J STD AIDS. 2014 Oct;25(11):785-92. https://pubmed.ncbi.nlm.nih.gov/24469972/
  463. Fabre-Mersseman V, Tubiana R, Papagno L, et al. Vitamin D supplementation is associated with reduced immune activation levels in HIV-1-infected patients on suppressive antiretroviral therapy. AIDS (London, England). 2014 Nov;28(18):2677-2682. https://europepmc.org/article/med/25493593
  464. Eckard AR, O'Riordan MA, Rosebush JC, et al. Vitamin D supplementation decreases immune activation and exhaustion in HIV-1-infected youth. Antivir Ther. 2018;23(4):315-324. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070412/
  465. Stallings VA, Schall JI, Hediger ML, et al. High-dose vitamin D3 supplementation in children and young adults with HIV: a randomized, placebo-controlled trial. Pediatr Infect Dis J. 2015 Feb;34(2):e32-40. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281504/
  466. Dougherty KA, Schall JI, Zemel BS, et al. Safety and Efficacy of High-Dose Daily Vitamin D3 Supplementation in Children and Young Adults Infected With Human Immunodeficiency Virus. J Pediatric Infect Dis Soc. 2014 Dec;3(4):294-303. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854371/
  467. Kakalia S, Sochett EB, Stephens D, et al. Vitamin D supplementation and CD4 count in children infected with human immunodeficiency virus. J Pediatr. 2011 Dec;159(6):951-7. https://pubmed.ncbi.nlm.nih.gov/21820130/
  468. Giacomet V, Vigano A, Manfredini V, et al. Cholecalciferol supplementation in HIV-infected youth with vitamin D insufficiency: effects on vitamin D status and T-cell phenotype: a randomized controlled trial. HIV Clin Trials. 2013 Mar-Apr;14(2):51-60. https://pubmed.ncbi.nlm.nih.gov/23611825/
  469. Steenhoff AP, Schall JI, Samuel J, et al. Vitamin D₃supplementation in Batswana children and adults with HIV: a pilot double blind randomized controlled trial. PLoS One. 2015 Feb 23;10(2):e0117123. https://pubmed.ncbi.nlm.nih.gov/25706751/
  470. Lerma-Chippirraz E, Güerri-Fernández R, Villar García J, et al. Validation Protocol of Vitamin D Supplementation in Patients with HIV-Infection. AIDS Res Treat. 2016;2016:5120831. https://pubmed.ncbi.nlm.nih.gov/27699068/
  471. Bañón S, Rosillo M, Gómez A, et al. Effect of a monthly dose of calcidiol in improving vitamin D deficiency and secondary hyperparathyroidism in HIV-infected patients. Endocrine. 2015 Jun;49(2):528-37. https://pubmed.ncbi.nlm.nih.gov/25432490/
  472. Pepe J, Mezzaroma I, Fantauzzi A, et al. An oral high dose of cholecalciferol restores vitamin D status in deficient postmenopausal HIV-1-infected women independently of protease inhibitors therapy: a pilot study. Endocrine. 2016 Jul;53(1):299-304. https://pubmed.ncbi.nlm.nih.gov/26254790/
  473. Havens PL, Stephensen CB, Hazra R, et al. Vitamin D3 decreases parathyroid hormone in HIV-infected youth being treated with tenofovir: a randomized, placebo-controlled trial. Clin Infect Dis. 2012 Apr;54(7):1013-25. https://pubmed.ncbi.nlm.nih.gov/22267714/
  474. Mela Q, Ruggiero V, Montaldo L, et al. Bone mass preservation with high-dose cholecalciferol and dietary calcium in HIV patients following antiretroviral therapy. Is it possible? HIV Clin Trials. 2018 Oct;19(5):188-196. https://pubmed.ncbi.nlm.nih.gov/30445888/
  475. Puthanakit T, Wittawatmongkol O, Poomlek V, et al. Effect of calcium and vitamin D supplementation on bone mineral accrual among HIV-infected Thai adolescents with low bone mineral density. J Virus Erad. 2018 Jan 1;4(1):6-11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851189/
  476. Overton ET, Chan ES, Brown TT, et al. Vitamin D and Calcium Attenuate Bone Loss With Antiretroviral Therapy Initiation: A Randomized Trial. Ann Intern Med. 2015 Jun 16;162(12):815-24. https://pubmed.ncbi.nlm.nih.gov/26075752/
  477. Piso RJ, Rothen M, Rothen JP, et al. Per oral substitution with 300000 IU vitamin D (Cholecalciferol) reduces bone turnover markers in HIV-infected patients. BMC Infect Dis. 2013 Dec 6;13:577. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029316/
  478. Etminani-Esfahani M, Khalili H, Jafari S, et al. Effects of vitamin D supplementation on the bone specific biomarkers in HIV infected individuals under treatment with efavirenz. BMC Res Notes. 2012 Apr 26;5:204. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527201/
  479. Arpadi SM, McMahon D, Abrams EJ, et al. Effect of bimonthly supplementation with oral cholecalciferol on serum 25-hydroxyvitamin D concentrations in HIV-infected children and adolescents. Pediatrics. 2009 Jan;123(1):e121-6. https://pubmed.ncbi.nlm.nih.gov/19117833/
  480. Rovner AJ, Stallings VA, Rutstein R, et al. Effect of high-dose cholecalciferol (vitamin D3) on bone and body composition in children and young adults with HIV infection: a randomized, double-blind, placebo-controlled trial. Osteoporos Int. 2017 Jan;28(1):201-209. https://pubmed.ncbi.nlm.nih.gov/27837268/
  481. Coelho L, Cardoso SW, Luz PM, et al. Vitamin D3 supplementation in HIV infection: effectiveness and associations with antiretroviral therapy. Nutr J. 2015 Aug 18;14:81. https://pubmed.ncbi.nlm.nih.gov/26283663/
  482. Lake JE, Hoffman RM, Tseng CH, et al. Success of Standard Dose Vitamin D Supplementation in Treated Human Immunodeficiency Virus Infection. Open Forum Infect Dis. 2015 May 15;2(2):ofv068. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462892/
  483. Havens PL, Mulligan K, Hazra R, et al. Serum 25-hydroxyvitamin D response to vitamin D3 supplementation 50,000 IU monthly in youth with HIV-1 infection. J Clin Endocrinol Metab. 2012 Nov;97(11):4004-13. https://pubmed.ncbi.nlm.nih.gov/22933542/
  484. Longenecker CT, Hileman CO, Carman TL, et al. Vitamin D supplementation and endothelial function in vitamin D deficient HIV-infected patients: a randomized placebo-controlled trial. Antivir Ther. 2012;17(4):613-21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898848/
  485. Sudfeld CR, Mugusi F, Aboud S, et al. Efficacy of vitamin D3 supplementation in reducing incidence of pulmonary tuberculosis and mortality among HIV-infected Tanzanian adults initiating antiretroviral therapy: study protocol for a randomized controlled trial. Trials. 2017 Feb 10;18(1):66. https://pubmed.ncbi.nlm.nih.gov/28183335/
  486. Soares AE, Maes M, Godeny P, et al. Addition of vitamin D reverses the decline in GFR following treatment with ACE inhibitors/angiotensin receptor blockers in patients with chronic kidney disease. Life Sci. 2017 Dec 15;191:175-179. https://pubmed.ncbi.nlm.nih.gov/29079468/
  487. Pérez-Castrillón JL, Justo I, Sanz A, et al. Effect of angiotensin converting enzyme inhibitors on 1.25-(OH)2 D levels of hypertensive patients. Relationship with ACE polymorphisms. Horm Metab Res. 2006 Dec;38(12):812-6. https://pubmed.ncbi.nlm.nih.gov/17163356/
  488. Pérez-Castrillón JL, Silva J, Justo I, et al. Effect of quinapril, quinapril-hydrochlorothiazide, and enalapril on the bone mass of hypertensive subjects: relationship with angiotensin converting enzyme polymorphisms. Am J Hypertens. 2003 Jun;16(6):453-9. https://pubmed.ncbi.nlm.nih.gov/12799093/
  489. Nahm N, Mee S, Marx G. Efficacy of management strategies for aromatase inhibitor-induced arthralgia in breast cancer patients: a systematic review. Asia Pac J Clin Oncol. 2018 Dec;14(6):374-382. https://pubmed.ncbi.nlm.nih.gov/29380528/
  490. Rastelli AL, Taylor ME, Gao F, et al. Vitamin D and aromatase inhibitor-induced musculoskeletal symptoms (AIMSS): a phase II, double-blind, placebo-controlled, randomized trial. Breast Cancer Res Treat. 2011 Aug;129(1):107-16. https://pubmed.ncbi.nlm.nih.gov/21691817/
  491. Khan QJ, Reddy PS, Kimler BF, et al. Effect of vitamin D supplementation on serum 25-hydroxy vitamin D levels, joint pain, and fatigue in women starting adjuvant letrozole treatment for breast cancer. Breast Cancer Res Treat. 2010 Jan;119(1):111-8.
  492. Prieto-Alhambra D, Javaid MK, Servitja S, Arden NK, Martinez-García M, Diez- Perez A, Albanell J, Tusquets I, Nogues X. Vitamin D threshold to prevent aromatase inhibitor-induced arthralgia: a prospective cohort study. Breast Cancer Res Treat. 2011 Feb;125(3):869-78. https://pubmed.ncbi.nlm.nih.gov/20665105/
  493. Niravath P, Hilsenbeck SG, Wang T, et al. Randomized controlled trial of high-dose versus standard-dose vitamin D3 for prevention of aromatase inhibitor-induced arthralgia. Breast Cancer Res Treat. 2019 Sep;177(2):427-435. https://pubmed.ncbi.nlm.nih.gov/31218477/
  494. Arul Vijaya Vani S, Ananthanarayanan PH, Kadambari D, et al. Effects of vitamin D and calcium supplementation on side effects profile in patients of breast cancer treated with letrozole. Clin Chim Acta. 2016 Aug 1;459:53-56. https://pubmed.ncbi.nlm.nih.gov/27221206/
  495. Shapiro AC, Adlis SA, Robien K, et al. Randomized, blinded trial of vitamin D3 for treating aromatase inhibitor- associated musculoskeletal symptoms (AIMSS). Breast Cancer Res Treat. 2016 Feb;155(3):501-12. https://pubmed.ncbi.nlm.nih.gov/26868123/
  496. Waltman NL, Ott CD, Twiss JJ, Gross GJ, Lindsey AM. Vitamin D insufficiency and musculoskeletal symptoms in breast cancer survivors on aromatase inhibitor therapy. Cancer Nurs. 2009 Mar-Apr;32(2):143-50. https://pubmed.ncbi.nlm.nih.gov/19125120/
  497. Jimenez JJ, Yunis AA. Protection from chemotherapy-induced alopecia by 1,25-dihydroxyvitamin D3. Cancer Res. 1992 Sep 15;52(18):5123-5. PMID: 1516070. https://pubmed.ncbi.nlm.nih.gov/1516070/
  498. Tan J, Dwivedi PP, Anderson P, Nutchey BK, O'Loughlin P, Morris HA, May BK, Ferrante A, Hii CS. Antineoplastic agents target the 25-hydroxyvitamin D3 24-hydroxylase messenger RNA for degradation: implications in anticancer activity. Mol Cancer Ther. 2007 Dec;6(12 Pt 1):3131-8. https://pubmed.ncbi.nlm.nih.gov/18089708/
  499. Torres R, Calle C, Aller P, Mata F. Etoposide stimulates 1,25-dihydroxyvitamin D3 differentiation activity, hormone binding and hormone receptor expression in HL-60 human promyelocytic cells. Mol Cell Biochem. 2000 May;208(1-2):157-62. https://pubmed.ncbi.nlm.nih.gov/10939640/
  500. Milczarek, M. Rosinska, S.Psurski, M. Maciejewska, M. Kutner, A. Wietrzyk, J. Combined colonic cancer treatment with vitamin D analogs and irinotecan or oxaliplatin. Anticancer Res. 2013, 33, 433–444. https://pubmed.ncbi.nlm.nih.gov/23393334/
  501. Pouwels S, Lalmohamed A, Souverein P, et al. Use of proton pump inhibitors and risk of hip/femur fracture: a population-based case-control study. Osteoporos Int. 2011 Mar;22(3):903-10. https://pubmed.ncbi.nlm.nih.gov/20585937/
  502. Fakih MG, Trump DL, Johnson CS, Tian L, Muindi J, Sunga AY. Chemotherapy is linked to severe vitamin D deficiency in patients with colorectal cancer. Int J Colorectal Dis. 2009 Feb;24(2):219–224. https://pubmed.ncbi.nlm.nih.gov/18830610/
  503. Fakih MG, Andrews C, McMahon J, Muindi JR. A prospective clinical trial of cholecalciferol 2000 IU/day in colorectal cancer patients: evidence of a chemotherapy-response interaction. Anticancer Res. 2012 Apr;32(4):1333-8. PMID: 22493367. https://pubmed.ncbi.nlm.nih.gov/22493367/
  504. Sun M, Zhang Q, Yang X, Qian SY, Guo B. Vitamin D Enhances the Efficacy of Irinotecan through miR-627-Mediated Inhibition of Intratumoral Drug Metabolism. Mol Cancer Ther. 2016 Sep;15(9):2086-95. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011008/
  505. Ravid A, Rocker D, Machlenkin A. et al.1,25-Dihydroxyvitamin D3 enhances the susceptibility of breast cancer cells to doxorubicin-induced oxidative damage. Cancer Res. 1999;59:862–7. https://pubmed.ncbi.nlm.nih.gov/10029076/
  506. Fan C, Georgiou KR, Morris HA, McKinnon RA, Keefe DMK, Howe PR, Xian CJ. Combination breast cancer chemotherapy with doxorubicin and cyclophosphamide damages bone and bone marrow in a female rat model. Breast Cancer Res Treat. 2017 Aug;165(1):41-51.
  507. FDA Label VITAMIN D- ergocalciferol capsule. //s3-us-west-2.amazonaws.com/drugbank/cite_this/attachments/files/000/000/626/original/20171115_3d741dB6-e6cc-4df6-a21d-4d0dcf768122.pdf?1531763562
  508. Ferris TF, Levitin H, Phillips ET, Epstein FH: Renal potassium-wasting induced by vitamin D. J Clin Invest. 1962 Jun;41:1222-9. https://pubmed.ncbi.nlm.nih.gov/13892592
  509. Anderson DC, Cooper AF, Naylor GJ. Vitamin D intoxication, with hypernatraemia, potassium and water depletion, and mental depression. Br Med J. 1968 Dec 21;4(5633):744-6. https://pubmed.ncbi.nlm.nih.gov/5723727
  510. Koul PA, Ahmad SH, Ahmad F, et al. Vitamin d toxicity in adults: a case series from an area with endemic hypovitaminosis d. Oman Med J. 2011 May;26(3):201-4. https://pubmed.ncbi.nlm.nih.gov/22043417
  511. Alshahrani F, Aljohani N: Vitamin D: deficiency, sufficiency and toxicity. Nutrients. 2013 Sep 13;5(9):3605-16. https://pubmed.ncbi.nlm.nih.gov/24067388 
  512. Elshama SS, Osman HE, El-Kenawy Ael-M, Youseef HM: Comparison between the protective effects of vitamin K and vitamin A on the modulation of hypervitaminosis D3 short-term toxicity in adult albino rats. Turk J Med Sci. 2016 Feb 17;46(2):524-38. https://pubmed.ncbi.nlm.nih.gov/27511521
  513. Wakeman M. A Literature Review of the Potential Impact of Medication on Vitamin D Status. Risk Manag Healthc Policy. 2021 Aug 14;14:3357-3381. https://pubmed.ncbi.nlm.nih.gov/34421316/
  514. duplicate of 237
  515. Wyatt CL, Jensen LS, Rowland GN. Effect of cimetidine on eggshell quality and plasma 25-hydroxycholecalciferol in laying hens. Poult Sci. 1990;69(11):1892–1899. https://pubmed.ncbi.nlm.nih.gov/1965038/
  516. Knodel LC, Talbert RL. Adverse effects of hypolipidaemic drugs. Med Toxicol. 1987 Jan-Feb;2(1):10-32. https://pubmed.ncbi.nlm.nih.gov/3547004/
  517. Compston JE, Horton LW. Oral 25-hydroxyvitamin D3 in treatment of osteomalacia associated with ileal resection and cholestyramine therapy. Gastroenterology. 1978;74:900–902. https://www.gastrojournal.org/article/0016-5085(78)90150-6/pdf
  518. Compston JE, Thompson RP. Intestinal absorption of 25-hydroxyvitamin D and osteomalacia in primary biliary cirrhosis. Lancet. 1977;1:721–724. https://pubmed.ncbi.nlm.nih.gov/66519/
  519. Hoogwerf BJ, Hibbard DM, Hunninghake DB. Effects of long-term cholestyramine administration on vitamin D and parathormone levels in middle-aged men with hypercholesterolaemia. J Lab Clin Med. 1992;119:407–411. https://pubmed.ncbi.nlm.nih.gov/1583392/
  520. Schwarz KB, Goldstein PD, Witztum JL, Schonfeld G. Fat-soluble vitamin concentrations in hypercholesterolemic children treated with colestipol. Pediatrics. 1980;65(2):243–250. https://pubmed.ncbi.nlm.nih.gov/7354970/
  521. Tsang RC, Roginsky MS, Mellies MJ, Glueck CJ. Plasma 25-hydroxy-vitamin D in familial hypercholesterolemic children receiving colestipol resin. Pediatr Res. 1978;12(10):980–982. https://pubmed.ncbi.nlm.nih.gov/724301/
  522. Pérez-Castrillón JL, Vega G, Abad L, et al. Effects of atorvastatin on vitamin D levels in patients with acute ischemic heart disease. Am J Cardiol. 2007;99(7):903–905. https://pubmed.ncbi.nlm.nih.gov/17398180/
  523. Montagnani M, Lore F, Di Cairano G, et al. Effects of pravastatin treatment on vitamin D metabolites. Clin Ther. 1994;16(5):824–829. https://pubmed.ncbi.nlm.nih.gov/7859242/
  524. Dobs AS, Levine MA, Margolis S. Effects of pravastatin, a new HMGCoA reductase inhibitor, on vitamin D synthesis in man. Metabolism. 1991;40(5):524–528. https://pubmed.ncbi.nlm.nih.gov/1902546/
  525. Vaughan CJ, Gotto AM. Update on statins: 2003. Circulation. 2004;110(7):886–892. https://pubmed.ncbi.nlm.nih.gov/15313959/
  526. Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet. 2002;41(5):343–370. https://pubmed.ncbi.nlm.nih.gov/12036392/
  527. Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006;80(6):565–581. https://pubmed.ncbi.nlm.nih.gov/17178259/
  528. Glossmann HH, Blumthaler M. Does rosuvastatin increase serum levels of 25-hydroxy-vitamin D? Dermato-endocrinology. 2012;4(1):2–7. https://pubmed.ncbi.nlm.nih.gov/22870344/
  529. Holick MF. The statin D-lemma. Dermato-Endocrinology. 2012;4(1):10–11. https://pubmed.ncbi.nlm.nih.gov/22870346/
  530. Sahebkar A, Reiner Ž, E Simental-Mendía L, et al. Impact of statin therapy on plasma vitamin D levels: a systematic review and meta-analysis. Curr Pharm Des. 2017;23(6):861–869. https://pubmed.ncbi.nlm.nih.gov/27719645/
  531. Michalska-Kasiczak M, Sahebkar A, Mikhailidis DP, et al. Analysis of vitamin D levels in patients with and without statin-associated myalgia—a systematic review and meta-analysis of 7 studies with 2420 patients. Int J Cardiol. 2015;178:111–116. https://pubmed.ncbi.nlm.nih.gov/25464233/
  532. Plotnikoff GA, Quigley JM. Prevalence of severe hypovitaminosis D in patients with persistent, nonspecific musculoskeletal pain. Mayo Clin Proc. 2003;78(12):1463–1470. https://pubmed.ncbi.nlm.nih.gov/14661675/
  533. Ahmed W, Khan N, Glueck CJ, et al. Low serum 25 (OH) vitamin D levels (
  534. Rickers H, Deding A, Christiansen C, et al. Corticosteroid- induced osteopenia and vitamin D metabolism: effect of vitamin D2, calcium phosphate and sodium fluoride administration. Clin Endocrinol. 1982;16(4):409–415. https://pubmed.ncbi.nlm.nih.gov/7047002/
  535. Zerwekh JE, Emkey RD, Harris ED. Low-dose prednisone therapy in rheumatoid arthritis: effect on vitamin D metabolism. Arthritis Rheum. 1984;27(9):1050–1052. https://pubmed.ncbi.nlm.nih.gov/6383408/
  536. Prummel MF, Wiersinga WM, Lips P, et al. The course of biochemical parameters of bone turnover during treatment with corticosteroids. J Clin Endocrinol Metab. 1991;72(2):382–386. https://pubmed.ncbi.nlm.nih.gov/1991808/
  537. Halton JM, Atkinson SA, Fraher L, et al. Altered mineral metabolism and bone mass in children during treatment for acute lymphoblastic leukemia. J Bone Miner Res. 1996;11(11):1774–1783. https://pubmed.ncbi.nlm.nih.gov/8915786/
  538. Klein RG, Arnaud SB, Gallagher JC, Deluca HF, Riggs BL. Intestinal calcium absorption in exogenous hypercortisonism: role of 25-hydroxyvitamin D and corticosteroid dose. J Clin Invest. 1977;60(1):253–259. https://pubmed.ncbi.nlm.nih.gov/874087/
  539. Lund B, Storm TL, Melsen F, et al. Bone mineral loss, bone histomorphometry and vitamin D metabolism in patients with rheumatoid arthritis on longterm glucocorticoid treatment. Clin Rheumatol. 1985;4(2):143–149. https://pubmed.ncbi.nlm.nih.gov/4006384/
  540. Bikle DD, Halloran B, Fong L, et al. Elevated 1,25-dihydroxyvitamin D levels in patients with chronic obstructive pulmonary disease treated with prednisone. J Clin Endocrinol Metab. 1993;76(2):456–461. https://pubmed.ncbi.nlm.nih.gov/8432789/
  541. Wolthers OD, Riis BJ, Pedersen S. Bone turnover in asthmatic children treated with oral prednisolone or inhaled budesonide. Pediatr Pulmonol. 1993;16(6):341–346. https://pubmed.ncbi.nlm.nih.gov/8134155/
  542. Bijlsma JW, Duursma SA, Huber-Bruning O. Bone metabolism during methylprednisolone pulse therapy in rheumatoid arthritis. Ann Rheum Dis. 1986;45(9):757–760. https://pubmed.ncbi.nlm.nih.gov/3767462/
  543. Slovik DM, Neer RM, Ohman JL, et al. Parathyroid hormone and 25-hydroxyvitamin D levels in glucocorticoid-treated patients. Clin Endocrinol. 1980;12(3):243–248. https://pubmed.ncbi.nlm.nih.gov/7389155/
  544. Als OS, Riis B, Christiansen C. Serum concentration of vitamin D metabolites in rheumatoid arthritis. Clin Rheumatol. 1987;6(2):238–243. https://pubmed.ncbi.nlm.nih.gov/3621843/
  545. von Scheven E, Gordon CM, Wypij D, et al. Variable deficits of bone mineral despite chronic glucocorticoid therapy in pediatric patients with inflammatory diseases: a Glaser Pediatric Research Network study. J Pediatr Endocrinol Metab. 2006;19(6):821–830. https://pubmed.ncbi.nlm.nih.gov/16886590/
  546. Cohran VC, Griffiths M, Heubi JE. Bone mineral density in children exposed to chronic glucocorticoid therapy. Clin Pediatr. 2008;47(5):469–475. https://pubmed.ncbi.nlm.nih.gov/18378941/
  547. Tannirandorn P, Epstein S. Drug-induced bone loss. Osteoporos Int. 2000; 11:637–659. https://pubmed.ncbi.nlm.nih.gov/11095167/
  548. Zimran A, Shilo S, Fisher D, Bab I. Histomorphometric evaluation of reversible heparin-induced osteoporosis in pregnancy. Arch Intern Med. 1986; 146:386–388. https://pubmed.ncbi.nlm.nih.gov/3947197/
  549. Dahlman TC. Osteoporotic fractures and the recurrence of thromboembolism during pregnancy and the puerperium in 184 women undergoing thromboprophylaxis with heparin. Am J Obstet Gynecol. 1993; 168:1265–1270. https://pubmed.ncbi.nlm.nih.gov/8475973/
  550. Barbour LA, Kick SD, Steiner JF, et al. A prospective study of heparin-induced osteoporosis in pregnancy using bone densitometry. Am J Obstet Gynecol. 1994; 170:862–869. https://pubmed.ncbi.nlm.nih.gov/8141217/
  551. Martineau P, Tawil N. Low-molecular-weight heparins in the treatment of deep-vein thrombosis. Ann Pharmacother. 1998; 32:588–98,601. https://journals.sagepub.com/doi/abs/10.1345/aph.16450
  552. Aarskog D, Aksnes L, Lehmann V. Low 1,25-dihydroxyvitamin D in heparin-induced osteopenia (letter). Lancet. 1980; 2:650–651. https://pubmed.ncbi.nlm.nih.gov/11714421/
  553. Pettila V, Leinonen P, Markkola A, et al. Postpartum bone mineral density in women treated for thromboprophylaxis with unfractionated heparin or LMW heparin. Thromb Haemost. 2002; 87:182–186. https://pubmed.ncbi.nlm.nih.gov/11858475/
  554. Sivakumaran M, Ghosh K, Zaidi Y, Hutchinson RM. Osteoporosis and vertebral collapse following low-dose, low molecular weight heparin therapy in a young patient. Clin Lab Haematol. 1996; 18:55–57. https://pubmed.ncbi.nlm.nih.gov/9118608/
  555. van Orten-Luiten AC, Janse A, Dhonukshe-Rutten RA, Witkamp RF. Vitamin D deficiency as adverse drug reaction? A cross-sectional study in Dutch geriatric outpatients. Eur J Clin Pharmacol. 2016;72(5):605–614. https://pubmed.ncbi.nlm.nih.gov/26873590/
  556. duplicate of 246
  557. Avgeri M, Papadopoulou A, Platokouki H, et al. Assessment of bone mineral density and markers of bone turnover in children under long-term oral anticoagulant therapy. J Pediatr Hematol Oncol. 2008;30(8):592–597. https://pubmed.ncbi.nlm.nih.gov/18799935/
  558. Sato Y, Honda Y, Kunoh H, Oizumi K. Long-term oral anticoagulation reduces bone mass in patients with previous hemispheric infarction and nonrheumatic atrial fibrillation. Stroke. 1997;28(12):2390–2394. https://pubmed.ncbi.nlm.nih.gov/9412619/
  559. Sato Y, Honda Y, Jun I. Long-term oral anticoagulation therapy and the risk of hip fracture in patients with previous hemispheric infarction and nonrheumatic atrial fibrillation. Cerebrovasc Dis. 2009;29(1):73. https://pubmed.ncbi.nlm.nih.gov/19907166/
  560. Ernst JB, Kuhn J, Becker T, et al. Association between circulating 25-hydroxyvitamin D levels and medication use in patients scheduled for cardiac surgery. Nutr Metab Cardiovasc Dis. 2015;25(3):280–286. https://pubmed.ncbi.nlm.nih.gov/25466599/
  561. Cigolini M, Iagulli MP, Miconi V, et al. Serum 25-hydroxyvitamin D3 concentrations and prevalence of cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2006;29(3):722–724. https://pubmed.ncbi.nlm.nih.gov/16505539/
  562. Rejnmark L, Vestergaard P, Heickendorff L, et al. Effects of thiazide- and loop-diuretics, alone or in combination, on calcitropic hormones and biochemical bone markers: a randomized controlled study. J Intern Med. 2001;250(2):144–153. https://pubmed.ncbi.nlm.nih.gov/11489064/
  563. Hathcock JN, Shao A, Vieth R, Heaney R. Risk assessment for vitamin D. Am J Clin Nutr. 2007;85(1):6–18. https://pubmed.ncbi.nlm.nih.gov/17209171/
  564. Desai HV, Gandhi K, Sharma M, et al. Thiazide-induced severe hypercalcemia: a case report and review of literature. Am J Ther. 2010 Nov-Dec;17(6):e234-6. https://pubmed.ncbi.nlm.nih.gov/20068444/
  565. Schmid C. Hyperkalzämie [Hypercalcemia]. Schweiz Med Wochenschr. 1994 Jun 25;124(25):1122-8. https://pubmed.ncbi.nlm.nih.gov/8029686/
  566. Rehan MA, Rashid A, Krell K, et al. Calcium Alkali Thiazide Syndrome: What We Need to Know. Cureus. 2020 Oct 8;12(10):e10856. https://pubmed.ncbi.nlm.nih.gov/33178509/
  567. Kawaguchi M, Mitsuhashi Y, Kondo S. Iatrogenic hypercalcemia due to vitamin D3 ointment (1,24(OH)2D3) combined with thiazide diuretics in a case of psoriasis. J Dermatol. 2003 Nov;30(11):801-4. https://pubmed.ncbi.nlm.nih.gov/14684937/
  568. Boulard JC, Hanslik T, Alterescu R, Baglin A. Hypercalcémie symptomatique après association vitamine D diurétiques thiazidiques. 2 observations chez des femmes âgées [Symptomatic hypercalcemia after vitamin D-thiazide diuretics combination. Two cases in elderly women]. Presse Med. 1994 Jan 22;23(2):96. https://pubmed.ncbi.nlm.nih.gov/8140079/
  569. Crowe M, Wollner L, Griffiths RA. Hypercalcaemia following vitamin D and thiazide therapy in the elderly. Practitioner. 1984 Mar;228(1389):312-3. https://pubmed.ncbi.nlm.nih.gov/6709583/
  570. Lemann J, Gray RW, Maierhofer WJ, Cheung HS. Hydrochlorothiazide inhibits bone resorption in men despite experimentally elevated serum 1,25-dihydroxyvitamin D concentrations. Kidney Int. 1985;28(6):951–958. https://pubmed.ncbi.nlm.nih.gov/3003445/
  571. Kokot F, Pietrek J, Srokowska S, et al. 25-Hydroxyvitamin D in patients with essential hypertension. Clin Nephrol. 1981;16(4):188–192. https://pubmed.ncbi.nlm.nih.gov/6975195/
  572. Perry HM, Jensen J, Kaiser FE, et al. The effects of thiazide diuretics on calcium metabolism in the aged. J Am Geriatr Soc. 1993;41(8):818–822. https://pubmed.ncbi.nlm.nih.gov/8340559/
  573. Rejnmark L, Vestergaard P, Heickendorff L, et al. Effects of long-term treatment with loop diuretics on bone mineral density, calcitropic hormones and bone turnover. J Intern Med. 2005;257:176–184. https://pubmed.ncbi.nlm.nih.gov/15656876/
  574. Ramayo E, Gonzalez-Moreno MP, Macias J, et al. Relationship between osteopenia, free testosterone, and vitamin D metabolite levels in HIV infected patients with and without highly active antiretroviral therapy. AIDS Res Hum Retroviruses. 2005;21(11):915–921. https://pubmed.ncbi.nlm.nih.gov/16386106/
  575. Curtis JR, Smith B, Weaver M, et al. Ethnic variations in the prevalence of metabolic bone disease among HIV-positive patients with lipodystrophy. AIDS Res Hum Retroviruses. 2006;22(2):125–131. https://pubmed.ncbi.nlm.nih.gov/16478393/
  576. Havers FP, Detrick B, Cardoso SW, et al. Change in Vitamin D levels occurs early after antiretroviral therapy initiation and depends on treatment regimen in resource-limited settings. PLoS One. 2014;9(4):e95164. https://pubmed.ncbi.nlm.nih.gov/24752177/
  577. Garcia Aparicio AM, Munoz Fernandez S, Gonzalez J, et al. Abnormalities in the bone mineral metabolism in HIV-infected patients. Clin Rheumatol. 2006;25(4):537–539. https://pubmed.ncbi.nlm.nih.gov/16208429/
  578. Cozzolino M, Vidal M, Arcidiacono MV, et al. HIV-protease inhibitors impair vitamin D bioactivation to 1,25-dihydroxyvitamin D. AIDS. 2003;17(4):513–520. https://pubmed.ncbi.nlm.nih.gov/12598771/
  579. Giménez VMM, Sanz RL, Marón FJM, et al. Vitamin D-RAAS Connection: An Integrative Standpoint into Cardiovascular and Neuroinflammatory Disorders. Curr Protein Pept Sci. 2020;21(10):948-954. https://pubmed.ncbi.nlm.nih.gov/32504501/
  580. Fernández-Juárez G, Luño J, Barrio V, et al.; PRONEDI Study Group. 25 (OH) vitamin D levels and renal disease progression in patients with type 2 diabetic nephropathy and blockade of the renin-angiotensin system. Clin J Am Soc Nephrol. 2013 Nov;8(11):1870-6. https://pubmed.ncbi.nlm.nih.gov/24135218/
  581. Sukkarieh HH, Bustami RT, Abdu MN, et al. The current practice of using angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in diabetic hypertensive and non-hypertensive patients. Is there a room for vitamin D? Saudi Med J. 2020 Oct;41(10):1083-1089. https://pubmed.ncbi.nlm.nih.gov/33026049/
  582. Alsaeed A. Comment on: The current practice of using angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in diabetic hypertensive and non-hypertensive patients. Is there a room for vitamin D? Saudi Med J. 2021 Jan;42(1):115. https://pubmed.ncbi.nlm.nih.gov/33399181/
  583. Chen L, Zhu H, Harshfield GA, et al. Association between serum 25-hydroxyvitamin D and the effects of Angiotensin II receptor blocker on renal function among African Americans: A post hoc analysis of a randomized placebo-controlled trial. J Clin Hypertens (Greenwich). 2020 Oct;22(10):1874-1883. https://pubmed.ncbi.nlm.nih.gov/32810358/
  584. Bernini G, Carrara D, Bacca A, et al. Effect of acute and chronic vitamin D administration on systemic renin angiotensin system in essential hypertensives and controls. J Endocrinol Invest. 2013 Apr;36(4):216-20. https://pubmed.ncbi.nlm.nih.gov/23645099/
  585. Xiaowei L, Bo W, Li L, Peng Z. Comparison of the effects of valsartan plus activated vitamin D versus valsartan alone in IgA nephropathy with moderate proteinuria. Int Urol Nephrol. 2020 Jan;52(1):129-136. https://pubmed.ncbi.nlm.nih.gov/31768803/
  586. Verhoeven V, Vanpuyenbroeck K, Lopez-Hartmann M, et al. Walk on the sunny side of life–epidemiology of hypovitaminosis D and mental health in elderly nursing home residents. J Nutr Health Aging. 2012;16(4):417–420. https://pubmed.ncbi.nlm.nih.gov/22499468/
  587. Milaneschi Y, Hoogendijk W, Lips P, et al. The association between low vitamin D and depressive disorders. Mol Psychiatry. 2014;19:444–451. https://pubmed.ncbi.nlm.nih.gov/23568194/
  588. Khoraminya N, Tehrani-Doost M, Jazayeri S, et al. Therapeutic effects of vitamin D as adjunctive therapy to fluoxetine in patients with major depressive disorder. Aust N Z J Psychiatry. 2013 Mar;47(3):271-5. https://pubmed.ncbi.nlm.nih.gov/23093054/
  589. Young RE, Ramsay LE, Murray TS. Barbiturates and serum calcium in the elderly. Postgrad Med J. 1977 Apr;53(618):212-5. https://pubmed.ncbi.nlm.nih.gov/323838/
  590. Meijerman I, Beijnen JH, Schellens JH. Herb-drug interactions in oncology: focus on mechanisms of induction. Oncologist. 2006;11(7):742–752. https://pubmed.ncbi.nlm.nih.gov/16880233/
  591. duplicate of 374
  592. Gao Y, Shimizu M, Yamada S, et al. The effects of chemotherapy including cisplatin on vitamin D metabolism. Endocr J. 1993;40(6):737–742. https://pubmed.ncbi.nlm.nih.gov/7951544/
  593. Crew KD, Shane E, Cremers S, et al. High prevalence of vitamin D deficiency despite supplementation in premenopausal women with breast cancer undergoing adjuvant chemotherapy. J Clin Oncol. 2009;27:2151–2156. https://pubmed.ncbi.nlm.nih.gov/19349547/
  594. Jacot W, Pouderoux S, Thezenas S. Increased prevalence of vitamin D insufficiency in patients with breast cancer after neoadjuvant chemotherapy. Breast Cancer Res Treat. 2012;134:709–717. https://pubmed.ncbi.nlm.nih.gov/22562178/
  595. Freedman DM, Looker AC, Chang SC, et al. Prospective study of serum vitamin D and cancer mortality in the United States. J Natl Cancer Inst. 2007;99:1594–1602. https://pubmed.ncbi.nlm.nih.gov/17971526/
  596. Goodwin PJ, Ennis M, Pritchard KI, et al. Prognostic effects of 25-hydroxyvitamin D levels in early breast cancer. J Clin Oncol. 2009;27:3757–3763. https://pubmed.ncbi.nlm.nih.gov/19451439/
  597. duplicate of 368
  598. Norsa A, Martino V. Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status. Cancer Biother Radiopharm. 2007 Feb;22(1):50-5. https://pubmed.ncbi.nlm.nih.gov/17627413/
  599. Bittenbring JT, Neumann F, Altmann B, et al. Vitamin D deficiency impairs rituximab-mediated cellular cytotoxicity and outcome of patients with diffuse large B-cell lymphoma treated with but not without rituximab. J Clin Oncol. 2014 Oct 10;32(29):3242-8. https://pubmed.ncbi.nlm.nih.gov/25135997/
  600. Kelly JL, Salles G, Goldman B, et al. Low Serum Vitamin D Levels Are Associated with Inferior Survival in Follicular Lymphoma: A Prospective Evaluation in SWOG and LYSA Studies. J Clin Oncol. 2015 May 1;33(13):1482-90. https://pubmed.ncbi.nlm.nih.gov/25823738/
  601. duplicate of 363
  602. Schündeln MM, Hauffa PK, Bauer JJ, et al. Pediatric Survivors of Retinoblastoma Are at Risk for Altered Bone Metabolism After Chemotherapy Treatment Early in Life. Pediatr Hematol Oncol. 2015;32(7):455-66. https://pubmed.ncbi.nlm.nih.gov/26237585/
  603. Nozaki T, Kusuzaki K, Takeshita H, et al. Effectiveness of activated vitamin D3 on improving prognosis of osteosarcoma patients. Oncol Rep. 2001 Mar-Apr;8(2):321-4. https://pubmed.ncbi.nlm.nih.gov/11182048/
  604. Hines SL, Mincey BA, Sloan JA, et al. Phase III randomized, placebo-controlled, double-blind trial of risedronate for the prevention of bone loss in premenopausal women undergoing chemotherapy for primary breast cancer. J Clin Oncol. 2009 Mar 1;27(7):1047-53. https://pubmed.ncbi.nlm.nih.gov/19075260/
  605. Cohen HJ, Silberman HR, Tornyos K, Bartolucci AA. Comparison of two long-term chemotherapy regimens, with or without agents to modify skeletal repair, in multiple myeloma. Blood. 1984 Mar;63(3):639-48. https://pubmed.ncbi.nlm.nih.gov/6421344/
  606. Norsa A, Martino V. Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status. Cancer Biother Radiopharm. 2006 Feb;21(1):68-73. https://pubmed.ncbi.nlm.nih.gov/16480333/
  607. Boucher BJ. Inadequate vitamin D status: does it contribute to the disorders comprising syndrome ‘X’? Br J Nutr. 1998;79(4):315–327. https://pubmed.ncbi.nlm.nih.gov/9624222/
  608. Takiishi T, Gysemans C, Bouillon R, Mathieu C. Vitamin D and diabetes. Endocrinol Metab Clin North Am. 2010;39:419–446. https://pubmed.ncbi.nlm.nih.gov/20511061/
  609. Kos E, Liszek MJ, Emanuele MA, et al. Effect of metformin therapy on vitamin D and vitamin B12 levels in patients with type 2 diabetes mellitus. Endocr Pract. 2012;18(2):179–184. https://pubmed.ncbi.nlm.nih.gov/21940283/
  610. Lecka-Czernik B. Bone as a target of type 2 diabetes treatment. Curr Opin Investig. 2009;10:1085–1090. https://pubmed.ncbi.nlm.nih.gov/19777397/
  611. Lecka-Czernik B. Bone loss in diabetes: use of antidiabetic thiazolidinediones and secondary osteoporosis. Curr Osteoporos Rep. 2010;8:178–184. https://pubmed.ncbi.nlm.nih.gov/20809203/
  612. Habib ZA, Havstad SL, Wells K, et al. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(2):592–600. https://pubmed.ncbi.nlm.nih.gov/20061432/
  613. Solomon DH, Cadarette SM, Choudhry NK, et al. A cohort study of thiazolidinediones and fractures in older adults with diabetes. J Clin Endocrinol Metab. 2009;94(8):2792–2798. https://pubmed.ncbi.nlm.nih.gov/19470635/
  614. Schwartz AV, Chen H, Ambrosius WT, et al. Effects of TZD use and discontinuation on fracture rates in ACCORD bone study. J Clin Endocrinol Metab. 2015;100(11):4059–4066. https://pubmed.ncbi.nlm.nih.gov/26305617/
  615. Billington EO, Grey A, Bolland MJ. The effect of thiazolidinediones on bone mineral density and bone turnover: systematic review and meta-analysis. Diabetologia. 2015;58(10):2238–2246. https://pubmed.ncbi.nlm.nih.gov/26109213/
  616. Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. Cmaj. 2009;180(1):32–39. https://pubmed.ncbi.nlm.nih.gov/19073651/
  617. Suzuki A, Kotake M, Ono Y, et al. Hypovitaminosis D in type 2 diabetes mellitus: association with microvascular complications and type of treatment. Endocr J. 2006;53(4):503–510. https://pubmed.ncbi.nlm.nih.gov/16829706/
  618. Pascussi JM, Gerbal-Chaloin S, Drocourt L, et al. The expression of CYP2B6, CYP2C9 and CYP3A4 genes: a tangle of networks of nuclear and steroid receptors. Biochim Biophys Acta. 2003 Feb 17;1619(3):243-53. https://pubmed.ncbi.nlm.nih.gov/12573484/
  619. Drocourt L, Ourlin JC, Pascussi JM, et al. Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem. 2002 Jul 12;277(28):25125-32. https://pubmed.ncbi.nlm.nih.gov/11991950/
  620. Schmiedlin-Ren P, Thummel KE, Fisher JM, et al. Induction of CYP3A4 by 1 alpha,25-dihydroxyvitamin D3 is human cell line-specific and is unlikely to involve pregnane X receptor. Drug Metab Dispos. 2001 Nov;29(11):1446-53. https://pubmed.ncbi.nlm.nih.gov/11602520/
  621. Thummel KE, Brimer C, Yasuda K, et al. Transcriptional control of intestinal cytochrome P-4503A by 1alpha,25-dihydroxy vitamin D3. Mol Pharmacol. 2001 Dec;60(6):1399-406. https://pubmed.ncbi.nlm.nih.gov/11723248/
  622. Chatterjee B, Echchgadda I, Song CS. Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1. Methods Enzymol. 2005;400:165-91. https://pubmed.ncbi.nlm.nih.gov/16399349/
  623. Fan J, Liu S, Du Y, et al. Up-regulation of transporters and enzymes by the vitamin D receptor ligands, 1alpha,25-dihydroxyvitamin D3 and vitamin D analogs, in the Caco-2 cell monolayer. J Pharmacol Exp Ther. 2009 Aug;330(2):389-402. https://pubmed.ncbi.nlm.nih.gov/19414624/
  624. Lindh JD, Andersson ML, Eliasson E, Björkhem-Bergman L. Seasonal variation in blood drug concentrations and a potential relationship to vitamin D. Drug Metab Dispos. 2011 May;39(5):933-7. https://pubmed.ncbi.nlm.nih.gov/21349923/
  625. Wang Z, Schuetz EG, Xu Y, Thummel KE. Interplay between vitamin D and the drug metabolizing enzyme CYP3A4. J Steroid Biochem Mol Biol. 2013 Jul;136:54-8. https://pubmed.ncbi.nlm.nih.gov/22985909/
  626. Morijiri Y, Sato T. Factors causing rickets in institutionalised handicapped children on anticonvulsant therapy. Arch Dis Child. 1981;56(6):446–449. https://pubmed.ncbi.nlm.nih.gov/6973324/
  627. Krause KH, Berlit P, Bonjour JP, et al. Vitamin status in patients on chronic anticonvulsant therapy. Int J Vitam Nutr Res. 1982;52(4):375–385. https://pubmed.ncbi.nlm.nih.gov/7160963/
  628. Gough H, Goggin T, Bissessar A, et al. A comparative study of the relative influence of different anticonvulsant drugs, UV exposure and diet on vitamin D and calcium metabolism in outpatients with epilepsy. Q J Med. 1986;59(230):569–577. https://pubmed.ncbi.nlm.nih.gov/3092278/
  629. Hahn TJ, Hendin BA, Scharp CR, Haddad JG. Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med. 1972;287(18):900–904. https://pubmed.ncbi.nlm.nih.gov/4561667/
  630. Bouillon R, Reynaert J, Claes JH, et al. The effect of anticonvulsant therapy on serum levels of 25-hydroxy-vitamin D, calcium, and parathyroid hormone. J Clin Endocrinol Metab. 1975;41(6):1130–1135. https://pubmed.ncbi.nlm.nih.gov/1206098/
  631. Jubiz W, Haussler MR, McCain TA, Tolman KG. Plasma 1,25-dihydroxyvitamin D levels in patients receiving anticonvulsant drugs. J Clin Endocrinol Metab. 1977;44(4):617–621. https://pubmed.ncbi.nlm.nih.gov/849976/
  632. Pylypchuk G, Oreopoulos DG, Wilson DR, et al. Calcium metabolism in adult outpatients with epilepsy receiving long-term anticonvulsant therapy. Can Med Assoc J. 1978;118(6):635–638.  https://pubmed.ncbi.nlm.nih.gov/418865/
  633. Weisman Y, Andriola M, Reiter E, et al. Serum concentrations of 25-hydroxyvitamin D in Florida children: effect of anticonvulsant drugs. South Med J. 1979;72(4):400–401, 408. https://pubmed.ncbi.nlm.nih.gov/432678/
  634. Christensen CK, Lund B, Lund BJ, et al. Reduced 2,25-dihydroxyvitamin D and 24,25-dihydroxyvitamin D in epileptic patients receiving chronic combined anticonvulsant therapy. Metab Bone Dis Relat Res. 1981;3(1):17–22. https://pubmed.ncbi.nlm.nih.gov/6973685/
  635. Hoikka V, Savolainen K, Alhava EM, et al. Osteomalacia in institutionalized epileptic patients on long-term anticonvulsant therapy. Acta Neurol Scand. 1981;64(2):122–131. https://pubmed.ncbi.nlm.nih.gov/7324878/
  636. Keck E, Gollnick B, Reinhardt D, et al. Calcium metabolism and vitamin D metabolite levels in children receiving anticonvulsant drugs. Eur J Pediatr. 1982;139(1):52–55. https://pubmed.ncbi.nlm.nih.gov/7173258/
  637. Lamberg-Allardt C, Wilska M, Saraste KL, Gronlund T. Vitamin D status of ambulatory and nonambulatory mentally retarded children with and without carbamazepine treatment. Ann Nutr Metab. 1990;34(4):216–220. https://pubmed.ncbi.nlm.nih.gov/2400203/
  638. Valimaki MJ, Tiihonen M, Laitinen K, et al. Bone mineral density measured by dual-energy x-ray absorptiometry and novel markers of bone formation and resorption in patients on antiepileptic drugs. J Bone Miner Res. 1994;9(5):631–637. https://pubmed.ncbi.nlm.nih.gov/8053391/
  639. Telci A, Cakatay U, Kurt BB, et al. Changes in bone turnover and deoxypyridinoline levels in epileptic patients. Clin Chem Lab Med. 2000;38(1):47–50. https://pubmed.ncbi.nlm.nih.gov/10774961/
  640. Stamp TC, Round JM, Rowe DJ, Haddad JG. Plasma levels and therapeutic effect of 25-hydroxycholecalciferol in epileptic patients taking anticonvulsant drugs. Br Med J. 1972;4(5831):9–12. https://pubmed.ncbi.nlm.nih.gov/4342760/
  641. duplicate of 45
  642. Davie MW, Emberson CE, Lawson DE, et al. Low plasma 25-hydroxyvitamin D and serum calcium levels in institutionalized epileptic subjects: associated risk factors, consequences and response to treatment with vitamin D. Q J Med. 1983;52(205):79–91. https://pubmed.ncbi.nlm.nih.gov/6603629/
  643. Hoikka V, Alhava EM, Karjalainen P, et al. Carbamazepine and bone mineral metabolism. Acta Neurol Scand. 1984;70(2):77–80. https://pubmed.ncbi.nlm.nih.gov/6485747/
  644. Rajantie J, Lamberg-Allardt C, Wilska M. Does carbamazepine treatment lead to a need of extra vitamin D in some mentally retarded children? Acta Paediatr Scand. 1984;73(3):325–328. https://pubmed.ncbi.nlm.nih.gov/6741535/
  645. Nishiyama S, Kuwahara T, Matsuda I. Decreased bone density in severely handicapped children and adults, with reference to the influence of limited mobility and anticonvulsant medication. Eur J Pediatr. 1986;144(5):457–463. https://pubmed.ncbi.nlm.nih.gov/3007152/
  646. Winnacker JL, Yeager H, Saunders JA, et al. Rickets in children receiving anticonvulsant drugs: biochemical and hormonal markers. Am J Dis Child. 1977;131(3):286–290. https://pubmed.ncbi.nlm.nih.gov/842513/
  647. Markestad T, Ulstein M, Strandjord RE, et al. Anticonvulsant drug therapy in human pregnancy: effects on serum concentrations of vitamin D metabolites in maternal and cord blood. Am J Obstet Gynecol. 1984;150(3):254–258. https://pubmed.ncbi.nlm.nih.gov/6091458/
  648. Riancho JA, Del Arco C, Arteaga R, et al. Influence of solar irradiation on vitamin D levels in children on anticonvulsant drugs. Acta Neurol Scand. 1989;79(4):296–299. https://pubmed.ncbi.nlm.nih.gov/2728853/
  649. Hoikka V, Savolainen K, Alhava EM, et al. Anticonvulsant osteomalacia in epileptic outpatients. Ann Clin Res. 1982;14(3):129–132. https://pubmed.ncbi.nlm.nih.gov/7137882/
  650. Bell RD, Pak CY, Zerwekh J, et al. Effect of phenytoin on bone and mineral density in ambulatory epileptic children. Brain Dev. 1994;16:382–385. doi:10.1016/0387-7604(94)90125-2 https://pubmed.ncbi.nlm.nih.gov/7892957/
  651. duplicate of 46
  652. Young RC, Blass JP. Iatrogenic nutritional deficiencies. Annu Rev Nutr. 1982;2:201–227. https://pubmed.ncbi.nlm.nih.gov/6764730/
  653. Livingston S, Pauli LL. Anticonvulsants and rickets–a different view. Pediatrics. 1976;57(6):979. https://pubmed.ncbi.nlm.nih.gov/934759/
  654. Offermann G, Pinto V, Kruse R. Antiepileptic drugs and vitamin D supplementation. Epilepsia. 1979;20(1):3–15. https://pubmed.ncbi.nlm.nih.gov/217680/
  655. Peterson P, Gray P, Tolman KG. Calcium balance in drug‐induced osteomalacia: response to vitamin D. Clin Pharmacol Ther. 1976;19(1):63–67. https://pubmed.ncbi.nlm.nih.gov/173491/
  656. Christiansen C, Rodbro P, Munck O. Actions of vitamins D2 and D3 and 25-OHD3 in anticonvulsant osteomalacia. Br Med J. 1975;2(5967):363–365. https://pubmed.ncbi.nlm.nih.gov/165857/
  657. duplicate of 44
  658. Robien K, Oppeneer SJ, Kelly JA, Hamilton-Reeves JM. Drug-vitamin D interactions: a systematic review of the literature. Nutr Clin Pract. 2013;28:194–208.
  659. Mikati MA, Dib L, Yamout B, et al. Two randomized vitamin D trials in ambulatory patients on anticonvulsants: impact on bone. Neurology. 2006;67(11):2005–2014. https://pubmed.ncbi.nlm.nih.gov/17536060/
  660. Jette N, Lix LM, Metge CJ, et al. Association of antiepileptic drugs with nontraumatic fractures: a population-based analysis. Arch Neurol. 2011;68:107–112. https://pubmed.ncbi.nlm.nih.gov/21220681/
  661. Lee RH, Lyles KW, Sloane R, Colón-Emeric C. The association of newer anticonvulsant medications and bone mineral density. Endocr Pract. 2012;1–22. https://pubmed.ncbi.nlm.nih.gov/22982796/
  662. Bauer S, Hofbauer LC, Rauner M, et al. Early detection of bone metabolism changes under different antiepileptic drugs (ED-BoM-AED) – a prospective multicenter study. Epilepsy Res. 2013;106:417–422. https://pubmed.ncbi.nlm.nih.gov/23916144/
  663. Beniczky SA, Viken J, Jensen LT, Andersen NB. Bone mineral density in adult patients treated with various antiepileptic drugs. Seizure. 2012;21:471–472. https://pubmed.ncbi.nlm.nih.gov/22541979/
  664. Koo DL, Hwang KJ, Han SW, et al. Effect of oxcarbazepine on bone mineral density and biochemical markers of bone metabolism in patients with epilepsy. Epilepsy Res. 2014;108:442–447. https://pubmed.ncbi.nlm.nih.gov/24507862/
  665. Meier C, Kraenzlin ME. Antiepileptics and bone health. Ther Adv Musculoskelet Dis. 2011;3:235–243. https://pubmed.ncbi.nlm.nih.gov/22870482/
  666. Mintzer S, Boppana P, Toguri J, DeSantis A. Vitamin D levels and bone turnover in epilepsy patients taking carbamazepine or oxcarbazepine. Epilepsia. 2006;47:510–515. https://pubmed.ncbi.nlm.nih.gov/16529614/
  667. PhaBPHal K, Geater A, Limapichat K, et al. Effect of switching hepatic enzyme-inducer antiepileptic drug to levetiracetam on bone mineral density, 25 hydroxyvitamin D, and parathyroid hormone in young adult patients with epilepsy. Epilepsia. 2013;54:e94–8. https://pubmed.ncbi.nlm.nih.gov/23586623/
  668. Nissen-Meyer LS, Svalheim S, Tauboll E, et al. Levetiracetam, phenytoin, and valproate act differently on rat bone mass, structure, and metabolism. Epilepsia. 2007;48:1850–1860. https://pubmed.ncbi.nlm.nih.gov/17634065/
  669. Wu F-J, Sheu SY, Lin HC. Osteoporosis is associated with antiepileptic drugs: a population-based study. Epileptic Disord. 2014;16(3):333–342. https://pubmed.ncbi.nlm.nih.gov/25166266/
  670. Grisso JA, Kelsey JL, O'Brien LA, et al. Risk factors for hip fracture in men. Hip Fracture Study Group. Am J Epidemiol. 1997 May 1;145(9):786-93.  https://pubmed.ncbi.nlm.nih.gov/9143208/
  671. Vestergaard P, Rejnmark L, Mosekilde L. Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. Calcif Tissue Int. 2006 Aug;79(2):76-83. https://pubmed.ncbi.nlm.nih.gov/16927047/
  672. Yang YX, Lewis JD, Epstein S, Metz DC. Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA. 2006 Dec 27;296(24):2947-53. https://pubmed.ncbi.nlm.nih.gov/17190895/
  673. Kaye JA, Jick H. Proton pump inhibitor use and risk of hip fractures in patients without major risk factors. Pharmacotherapy. 2008;28(8):951-959. https://pubmed.ncbi.nlm.nih.gov/18657011/
  674. Targownik LE, Lix LM, Metge CJ, et al. Use of proton pump inhibitors and risk of osteoporosis-related fractures. CMAJ. 2008 Aug 12;179(4):319-26. https://pubmed.ncbi.nlm.nih.gov/18695179/
  675. Yu EW, Blackwell T, Ensrud KE, et al. Acid-suppressive medications and risk of bone loss and fracture in older adults. Calcif Tissue Int. 2008 Oct;83(4):251-9. https://pubmed.ncbi.nlm.nih.gov/18813868/
  676. Roux C, Briot K, Gossec L, et al. Increase in vertebral fracture risk in postmenopausal women using omeprazole. Calcif Tissue Int. 2009 Jan;84(1):13-9.  https://pubmed.ncbi.nlm.nih.gov/19023510/
  677. Gray SL, LaCroix AZ, Larson J, et al. Proton pump inhibitor use, hip fracture, and change in bone mineral density in postmenopausal women: results from the Women's Health Initiative. Arch Intern Med. 2010 May 10;170(9):765-71. https://pubmed.ncbi.nlm.nih.gov/20458083/
  678. Corley DA, Kubo A, Zhao W, Quesenberry C. Proton pump inhibitors and histamine-2 receptor antagonists are associated with hip fractures among at-risk patients. Gastroenterology. 2010 Jul;139(1):93-101. https://pubmed.ncbi.nlm.nih.gov/20353792/
  679. Chiu HF, Huang YW, Chang CC, Yang CY. Use of proton pump inhibitors increased the risk of hip fracture: a population-based case-control study. Pharmacoepidemiol Drug Saf. 2010 Nov;19(11):1131-6. https://pubmed.ncbi.nlm.nih.gov/20872906/
  680. Yamazaki H, Shimada T. Effects of arachidonic acid, prostaglandins, retinol, retinoic acid and cholecalciferol on xenobiotic oxidations catalysed by human cytochrome P450 enzymes. Xenobiotica. 1999 Mar;29(3):231-41. https://pubmed.ncbi.nlm.nih.gov/10219964/
  681. FDA Drug label https://s3-us-west-2.amazonaws.com/drugbank/fda_labels/DB11094.pdf?1521670040
  682. Vitamin D Fact Sheet for Health Professionals. NIH. https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/#h2
  683. Cholecalciferol Canadian Prescribing Information. https://s3-us-west-2.amazonaws.com/drugbank/cite_this/attachments/files/000/004/027/original/LUXA-D-product-monograph.pdf?1553031970
  684. Decalcitrol (coated cholecalciferol tablet) US FDA Monograph. //s3-us-west-2.amazonaws.com/drugbank/cite_this/attachments/files/000/004/042/original/20171228_c5475e39-3d34-40f9-abf9-cb1af73c4c6c.pdf?1553115210
  685. Jean G, Souberbielle JC, Chazot C: Vitamin D in Chronic Kidney Disease and Dialysis Patients. Nutrients. 2017 Mar 25;9(4). pii: nu9040328. https://pubmed.ncbi.nlm.nih.gov/28346348
  686. Heaney RP: Alendronate plus cholecalciferol for the treatment of osteoporosis. Womens Health (Lond). 2006 Jan;2(1):23-7. https://pubmed.ncbi.nlm.nih.gov/19803923
  687. Alendronate sodium and cholecalciferol Canadian Product Monograph. //s3-us-west-2.amazonaws.com/drugbank/cite_this/attachments/files/000/004/051/original/Alendronate-Cholecalciferol_TAB_Monograph.pdf?1553120651
  688. CLH Report for Cholecalciferol. //s3-us-west-2.amazonaws.com/drugbank/cite_this/attachments/files/000/004/048/original/clh_report_colecalciferol_en.pdf?1553119499
  689. Cholecalciferol (Vitamin D3) – Pharmacological Properties, Therapeutic Utility and Potential New Fields of Clinical Application by Yulian Voynikov, Georgi Momekov, Plamen Peikov. https://www.researchgate.net/publication/312164408
  690. Borel P, Caillaud D, Cano NJ: Vitamin D bioavailability: state of the art. Crit Rev Food Sci Nutr. 2015;55(9):1193-205. https://pubmed.ncbi.nlm.nih.gov/24915331
  691. Caroline Ashley, Aileen Dunleavy (2018). The Renal Drug Handbook: The Ultimate Prescribing Guide for Renal Practitioners, 5th Edition (5th ed.). CRC Press.
  692. Vitamin D Supplementation: An Update. https://www.uspharmacist.com/article/vitamin-d-supplementation-an-update
  693. Jones KS, Assar S, Harnpanich D, Bouillon R, Lambrechts D, Prentice A, Schoenmakers I: 25(OH)D2 half-life is shorter than 25(OH)D3 half-life and is influenced by DBP concentration and genotype. J Clin Endocrinol Metab. 2014 Sep;99(9):3373-81. https://pubmed.ncbi.nlm.nih.gov/24885631
  694. Benaboud S, Urien S, Thervet E, Prie D, Legendre C, Souberbielle JC, Hirt D, Friedlander G, Treluyer JM, Courbebaisse M: Determination of optimal cholecalciferol treatment in renal transplant recipients using a population pharmacokinetic approach. Eur J Clin Pharmacol. 2013 Mar;69(3):499-506. https://pubmed.ncbi.nlm.nih.gov/22936122
  695. Armas LA, Hollis BW, Heaney RP: Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004 Nov;89(11):5387-91. https://pubmed.ncbi.nlm.nih.gov/15531486
  696. DeLuca HF: Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004 Dec;80(6 Suppl):1689S-96S. https://pubmed.ncbi.nlm.nih.gov/15585789
  697. DeLuca HF: Metabolism of vitamin D: current status. Am J Clin Nutr. 1976 Nov;29(11):1258-70. https://pubmed.ncbi.nlm.nih.gov/187053
  698. duplicate of 693
  699. "Kumar R. The Metabolism of Dihydroxylated Vitamin D Metabolites. In: Kumar R, editor. Vitamin D: Basic and Clinical Aspects. Boston, MA: Springer US; 1984. p. 69–90. https://doi.org/10.1007/978-1-4613-2839-1_2
  700. https://doi.org/10.1007/978-1-4613-2839-1_2"
  701. duplicate of 692
  702. Sandoz. PediaVit D (vitamin D) oral solution. https://www.sandoz.ca/en/pediavit-dtm-vitamin-d-oral-solution-50ml50-doses-oral-solution
  703. Gaughran F, Stringer D, Wojewodka G, et al. Effect of Vitamin D Supplementation on Outcomes in People With Early Psychosis: The DFEND Randomized Clinical Trial. JAMA Netw Open. 2021 Dec 1;4(12):e2140858. https://pubmed.ncbi.nlm.nih.gov/34962559/
  704. Tofthagen C, Tanay M, Perlman A, et al. A Systematic Review of Nutritional Lab Correlates with Chemotherapy Induced Peripheral Neuropathy. J Clin Med. 2022 Jan 12;11(2):355. https://pubmed.ncbi.nlm.nih.gov/35054049/
  705. Grim J, Ticha A, Hyspler R, et al. Selected Risk Nutritional Factors for Chemotherapy-Induced Polyneuropathy. Nutrients. 2017 May 25;9(6):535. https://pubmed.ncbi.nlm.nih.gov/28587059/
  706. Wang J, Udd KA, Vidisheva A, et al. Low serum vitamin D occurs commonly among multiple myeloma patients treated with bortezomib and/or thalidomide and is associated with severe neuropathy. Support Care Cancer. 2016 Jul;24(7):3105-10. https://pubmed.ncbi.nlm.nih.gov/26902977/
  707. Yildirim N, Cengiz M. Predictive clinical factors of chronic peripheral neuropathy induced by oxaliplatin. Support Care Cancer. 2020 Oct;28(10):4781-4788. https://pubmed.ncbi.nlm.nih.gov/31974772/
  708. Chartron E, Firmin N, Touraine C, et al. A Phase II Multicenter Trial on High-Dose Vitamin D Supplementation for the Correction of Vitamin D Insufficiency in Patients with Breast Cancer Receiving Adjuvant Chemotherapy. Nutrients. 2021 Dec 10;13(12):4429.  https://pubmed.ncbi.nlm.nih.gov/34959982/
  709. Roberts KE, Adsett IT, Rickett K, et al. Systemic therapies for preventing or treating aromatase inhibitor-induced musculoskeletal symptoms in early breast cancer. Cochrane Database Syst Rev. 2022 Jan 10;1(1):CD013167. https://pubmed.ncbi.nlm.nih.gov/35005781/
  710. Gaughran F, Stringer D, Wojewodka G, et al. Effect of Vitamin D Supplementation on Outcomes in People With Early Psychosis: The DFEND Randomized Clinical Trial. JAMA Netw Open. 2021 Dec 1;4(12):e2140858. https://pubmed.ncbi.nlm.nih.gov/34962559
  711. Zhang Y, Xue Y, Zhang D, et al. Effect of Vitamin D Supplementation on Glycemic Control in Prediabetes: A Meta-Analysis. Nutrients. 2021 Dec 14;13(12):4464. https://pubmed.ncbi.nlm.nih.gov/34960022/
  712. Głąbska D, Kołota A, Lachowicz K, et al. Vitamin D Supplementation and Mental Health in Multiple Sclerosis Patients: A Systematic Review. Nutrients. 2021 Nov 24;13(12):4207. https://pubmed.ncbi.nlm.nih.gov/34959758/
  713. Hafner-Giessauf H, Horn S, Schwantzer G, et al. Cholecalciferol supplementation to improve the hepatitis B vaccination response in hemodialysis patients: A first randomized open label pilot study (DeVitaHep). Vaccine. 2021 Dec 20;39(52):7562-7568. https://pubmed.ncbi.nlm.nih.gov/34802788/
  714. Bleizgys A. Vitamin D Dosing: Basic Principles and a Brief Algorithm (2021 Update). Nutrients. 2021 Dec 10;13(12):4415. https://pubmed.ncbi.nlm.nih.gov/34959969/
  715. Ataide FL, Carvalho Bastos LM, Vicente Matias MF, Skare TL, Freire de Carvalho J. Safety and effectiveness of vitamin D mega-dose: A systematic review. Clin Nutr ESPEN. 2021 Dec;46:115-120. https://pubmed.ncbi.nlm.nih.gov/34857184/
  716. Xu X, Shao G, Zhang X, et al. The efficacy of nutritional supplements for the adjunctive treatment of schizophrenia in adults: A systematic review and network meta-analysis. Psychiatry Res. 2022 Mar 7;311:114500. https://pubmed.ncbi.nlm.nih.gov/35287043/
  717. Ghaderi A, Banafshe HR, Mirhosseini N, Moradi M, Karimi MA, Mehrzad F, Bahmani F, Asemi Z. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry. 2019 Feb 21;19(1):77. https://pubmed.ncbi.nlm.nih.gov/30791895/
  718. Valipour G, Saneei P, Esmaillzadeh A. Serum vitamin D levels in relation to schizophrenia: a systematic review and meta-analysis of observational studies. J Clin Endocrinol Metab. 2014 Oct;99(10):3863-72. https://pubmed.ncbi.nlm.nih.gov/25050991/
  719. Zhu JL, Luo WW, Cheng X, Li Y, Zhang QZ, Peng WX. Vitamin D deficiency and Schizophrenia in Adults: A Systematic Review and Meta-analysis of Observational Studies. Psychiatry Res. 2020 Jun;288:112959. https://pubmed.ncbi.nlm.nih.gov/32335466/
  720. Kim Y, Oh YK, Lee J, Kim E. Could nutrient supplements provide additional glycemic control in diabetes management? A systematic review and meta-analysis of randomized controlled trials of as an add-on nutritional supplementation therapy. Arch Pharm Res. 2022 Mar;45(3):185-204.  https://pubmed.ncbi.nlm.nih.gov/35304727/
  721. Rasouli N, Brodsky IG, Chatterjee R, et al; D2d Research Group. Effects of Vitamin D Supplementation on Insulin Sensitivity and Secretion in Prediabetes. J Clin Endocrinol Metab. 2022 Jan 1;107(1):230-240.  https://pubmed.ncbi.nlm.nih.gov/34473295/
  722. Holt R, Petersen JH, Dinsdale E, et al. Vitamin D Supplementation Improves Fasting Insulin Levels and HDL Cholesterol in Infertile Men. J Clin Endocrinol Metab. 2022 Jan 1;107(1):98-108.  https://pubmed.ncbi.nlm.nih.gov/34508607/
  723. Maturana-Ramírez A, Aitken-Saavedra J, Guevara-Benítez AL, Espinoza-Santander I. Hypovitaminosis D, oral potentially malignant disorders, and oral squamous cell carcinoma: a systematic review. Med Oral Patol Oral Cir Bucal. 2022 Mar 1;27(2):e135-e141.  https://pubmed.ncbi.nlm.nih.gov/35218642/
  724. Walker DD, Reeves TD, de Costa AM, et al. Immunological modulation by 1α,25-dihydroxyvitamin D3 in patients with squamous cell carcinoma of the head and neck. Cytokine. 2012;58:448–54.  https://pubmed.ncbi.nlm.nih.gov/22450225/
  725. Walsh JE, Clark AM, Day TA, et al. Use of alpha,25-dihydroxyvitamin D3 treatment to stimulate immune infiltration into head and neck squamous cell carcinoma. Hum Immunol. 2010l;71:659–65.  https://pubmed.ncbi.nlm.nih.gov/20438786/
  726. Lipworth L, Rossi M, McLaughlin JK, et al. Dietary vitamin D and cancers of the oral cavity and esophagus. Ann Oncol. 2009;20:1576–81.  https://pubmed.ncbi.nlm.nih.gov/19487490/
  727. Fanidi A, Muller DC, Midttun Ø, et al. Circulating vitamin D in relation to cancer incidence and survival of the head and neck and oesophagus in the EPIC cohort. Sci Rep. 2016;6:36017.  https://pubmed.ncbi.nlm.nih.gov/27812016/
  728. Anand A, Singh S, Sonkar AA, et al. Expression of vitamin D receptor and vitamin D status in patients with oral neoplasms and effect of vitamin D supplementation on quality of life in advanced cancer treatment. Contemp Oncol (Pozn) 2017;21:145–51.  https://pubmed.ncbi.nlm.nih.gov/28947884/
  729. Orell-Kotikangas H, Schwab U, Österlund P, et al. High prevalence of vitamin D insufficiency in patients with head and neck cancer at diagnosis. Head Neck. 2012;34:1450–5.  https://pubmed.ncbi.nlm.nih.gov/22287291/
  730. Udeabor SE, Albejadi AM, Al-Shehri WAK, et al. Serum levels of 25-hydroxy-vitamin D in patients with oral squamous cell carcinoma: Making a case for chemoprevention. Clin Exp Dent Res. 2020;6:428–32.  https://pubmed.ncbi.nlm.nih.gov/32246747/
  731. Bahramian A, Bahramian M, Mehdipour M, et al. Comparing Vitamin D Serum Levels in Patients with Oral Lichen Planus and Healthy Subjects. J Dent (Shiraz) 2018;19:212–6.  https://pubmed.ncbi.nlm.nih.gov/30175191/
  732. Bochen F, Balensiefer B, Körner S, et al. Vitamin D deficiency in head and neck cancer patients - prevalence, prognostic value and impact on immune function. Oncoimmunology. 2018;7:e1476817.  https://pubmed.ncbi.nlm.nih.gov/30228945/
  733. Grimm M, Cetindis M, Biegner T, et al. Serum vitamin D levels of patients with oral squamous cell carcinoma (OSCC) and expression of vitamin D receptor in oral precancerous lesions and OSCC. Med Oral Patol Oral Cir Bucal. 2015;20:e188–95.  https://pubmed.ncbi.nlm.nih.gov/25662556/
  734. Young MR, Levingston C, Johnson SD. Cytokine and Adipokine Levels in Patients with Premalignant Oral Lesions or in Patients with Oral Cancer Who Did or Did Not Receive 1α,25-Dihydroxyvitamin D3 Treatment upon Cancer Diagnosis. Cancers (Basel) 2015;25:1109–24.  https://pubmed.ncbi.nlm.nih.gov/26120967/
  735. Zhang H, Lu H, Shrestha C, et al. In serum, higher parathyroid hormone but not lower vitamin D is associated with oral squamous cell carcinoma. Curr Oncol. 2015;22:e259–63.  https://pubmed.ncbi.nlm.nih.gov/26300676/
  736. Zarrati M, Sohouli MH, Aleayyub S, et al. The Effect of Vitamin D Supplementation on Treatment-Induced Pain in Cancer Patients: A Systematic Review. Pain Manag Nurs. 2022 Mar 9:S1524-9042(22)00009-1. https://pubmed.ncbi.nlm.nih.gov/35279360/
  737. Borges-Vieira JG, Cardoso CKS. Efficacy of B-vitamins and vitamin D therapy in improving depressive and anxiety disorders: a systematic review of randomized controlled trials. Nutr Neurosci. 2022 Feb 14:1-21. https://pubmed.ncbi.nlm.nih.gov/35156551/
  738. Penckofer S, Ridosh M, Adams W, et al. Vitamin D Supplementation for the Treatment of Depressive Symptoms in Women with Type 2 Diabetes: A Randomized Clinical Trial. J Diabetes Res. 2022 Mar 3;2022:4090807.  https://pubmed.ncbi.nlm.nih.gov/35280228/
  739. Mokhtari E, Hajhashemy Z, Saneei P. Serum Vitamin D Levels in Relation to Hypertension and Pre-hypertension in Adults: A Systematic Review and Dose-Response Meta-Analysis of Epidemiologic Studies. Front Nutr. 2022 Mar 10;9:829307. https://pubmed.ncbi.nlm.nih.gov/35360696/
  740. Yang H, Sun D, Wu F, et al. Effects of Vitamin D on Respiratory Function and Immune Status for Patients with Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review and Meta-Analysis. Comput Math Methods Med. 2022 Mar 12;2022:2910782.  https://pubmed.ncbi.nlm.nih.gov/35313462/
  741. Waltman N, Kupzyk KA, Flores LE, et al. Bone-loading exercises versus risedronate for the prevention of osteoporosis in postmenopausal women with low bone mass: a randomized controlled trial. Osteoporos Int. 2022 Feb;33(2):475-486.  https://pubmed.ncbi.nlm.nih.gov/34519832/
  742. Rezamand G, Estêvão MD, Morvaridzadeh M, et al. Effects of Vitamin D Supplementation on Bone Health and Bone-related Parameters in HIV-infected Patients: A Systematic Review and Meta-analysis. Clin Ther. 2022 Feb;44(2):e11-25.e8. https://pubmed.ncbi.nlm.nih.gov/35256212/
  743. Goyal J, Singh S, Bisnoi R, et al. Efficacy and safety of vitamin D in tuberculosis patients: a systematic review and meta-analysis. Expert Rev Anti Infect Ther. 2022 Apr 28. https://pubmed.ncbi.nlm.nih.gov/35477334/
  744. Wallis RS, Zumla A. Vitamin D as Adjunctive Host-Directed Therapy in Tuberculosis: A Systematic Review. Open Forum Infect Dis. 2016 Sep 7;3(3):ofw151. https://pubmed.ncbi.nlm.nih.gov/27800526/
  745. Wang J, Feng M, Ying S, et al. Efficacy and Safety of Vitamin D Supplementation for Pulmonary Tuberculosis: A Systematic Review and Meta-analysis. Iran J Public Health. 2018 Apr;47(4):466-472. https://pubmed.ncbi.nlm.nih.gov/29900130/
  746. Jolliffe DA, Ganmaa D, Wejse C, et al. Adjunctive vitamin D in tuberculosis treatment: meta-analysis of individual participant data. Eur Respir J. 2019 Mar 7;53(3):1802003. https://pubmed.ncbi.nlm.nih.gov/30728208/
  747. Patel DG, Kurian SJ, Miraj SS, et al. Effect of Vitamin D Supplementation in Type 2 Diabetes Patients with Tuberculosis: A Systematic Review. Curr Diabetes Rev. 2021 Sep 2. https://pubmed.ncbi.nlm.nih.gov/34473618/
  748. Xia J, Shi L, Zhao L, Xu F. Impact of vitamin D supplementation on the outcome of tuberculosis treatment: a systematic review and meta-analysis of randomized controlled trials. Chin Med J (Engl). 2014;127(17):3127-34. https://pubmed.ncbi.nlm.nih.gov/25189958/
  749. Tang XZ, Huang T, Ma Y, et al. [Meta-analysis of efficacy and safety of vitamin D supplementation in the treatment of pulmonary tuberculosis]. Zhonghua Yi Xue Za Zhi. 2020 Aug 25;100(32):2525-2531. https://pubmed.ncbi.nlm.nih.gov/32829600/
  750. Zhang J, Chen C, Yang J. Effectiveness of vitamin D supplementation on the outcome of pulmonary tuberculosis treatment in adults: a meta-analysis of randomized controlled trials. Chin Med J (Engl). 2019 Dec 20;132(24):2950-2959. https://pubmed.ncbi.nlm.nih.gov/31833904/
  751. Kafle S, Basnet AK, Karki K, et al. Association of Vitamin D Deficiency With Pulmonary Tuberculosis: A Systematic Review and Meta-Analysis. Cureus. 2021 Sep 10;13(9):e17883. https://pubmed.ncbi.nlm.nih.gov/34660082/
  752. Gou X, Pan L, Tang F, Gao H, Xiao D. The association between vitamin D status and tuberculosis in children: A meta-analysis. Medicine (Baltimore). 2018 Aug;97(35):e12179. https://pubmed.ncbi.nlm.nih.gov/30170465/
  753. Keflie TS, Nölle N, Lambert C, et al. Vitamin D deficiencies among tuberculosis patients in Africa: A systematic review. Nutrition. 2015 Oct;31(10):1204-12. https://pubmed.ncbi.nlm.nih.gov/26333888/
  754. Nnoaham KE, Clarke A. Low serum vitamin D levels and tuberculosis: a systematic review and meta-analysis. Int J Epidemiol. 2008 Feb;37(1):113-9. https://pubmed.ncbi.nlm.nih.gov/18245055/
  755. Aibana O, Huang CC, Aboud S, et al. Vitamin D status and risk of incident tuberculosis disease: A nested case-control study, systematic review, and individual-participant data meta-analysis. PLoS Med. 2019 Sep 11;16(9):e1002907. https://pubmed.ncbi.nlm.nih.gov/31509529/
  756. Xu F, Ma B, Wang D, et al. Associating the blood vitamin A, C, D and E status with tuberculosis: a systematic review and meta-analysis of observational studies. Food Funct. 2022 Apr 11. https://pubmed.ncbi.nlm.nih.gov/35403633/
  757. Zeng J, Wu G, Yang W, Gu X, Liang W, Yao Y, Song Y. A serum vitamin D level <25nmol/l pose high tuberculosis risk: a meta-analysis. PLoS One. 2015 May 4;10(5):e0126014. https://pubmed.ncbi.nlm.nih.gov/25938683/Acen EL, Biraro IA, Worodria W, et al. Impact of vitamin D status and cathelicidin antimicrobial peptide on adults with active pulmonary TB globally: A systematic review and meta-analysis. PLoS One. 2021 Jun 11;16(6):e0252762. https://pubmed.ncbi.nlm.nih.gov/34115790/
  758. Sarin P, Duffy J, Mughal Z, et al. Vitamin D and tuberculosis: review and association in three rural provinces of Afghanistan. Int J Tuberc Lung Dis. 2016 Mar;20(3):383-8. https://pubmed.ncbi.nlm.nih.gov/27046721/
  759. Cao Y, Wang X, Liu P, et al. Vitamin D and the risk of latent tuberculosis infection: a systematic review and meta-analysis. BMC Pulm Med. 2022 Jan 19;22(1):39. https://pubmed.ncbi.nlm.nih.gov/35045861/
  760. Theiler-Schwetz V, Trummer C, Grübler MR, et al. Effects of Vitamin D Supplementation on 24-Hour Blood Pressure in Patients with Low 25-Hydroxyvitamin D Levels: A Randomized Controlled Trial. Nutrients. 2022 Mar 24;14(7):1360. https://pubmed.ncbi.nlm.nih.gov/35405973/
  761. Bi X, Liu F, Zhang X, et al. Vitamin D and Calcium Supplementation Reverses Tenofovir-Caused Bone Mineral Density Loss in People Taking ART or PrEP: A Systematic Review and Meta-Analysis. Front Nutr. 2022 Mar 1;9:749948.  https://pubmed.ncbi.nlm.nih.gov/35433788/



דוגמא לדף מידע מלא

לרכישת מנוי  |  כניסת מנויים

חזרה לתחילת העמוד

חזרה לעמוד הקודם